Background: With the Coronavirus becoming a new reality of our world, global efforts continue to seek answers to many questions regarding the spread, variants, vaccinations, and medications. Particularly, with the emergence of several strains (e.g.
View Article and Find Full Text PDFThis study describes the structure of the putative ABC-type 2 transporter TM0543 from Thermotoga maritima MSB8 determined at a resolution of 2.3 Å. In comparative sequence-clustering analysis, TM0543 displays similarity to NatAB-like proteins, which are components of the ABC-type Na(+) efflux pump permease.
View Article and Find Full Text PDFWe report a 2.0 Å structure of the CAE31940 protein, a proteobacterial NMT1/THI5-like domain-containing protein. We also discuss the primary and tertiary structure similarity with its homologs.
View Article and Find Full Text PDFWe present the crystal structures of two universal stress proteins (USP) from Archaeoglobus fulgidus and Nitrosomonas europaea in both apo- and ligand-bound forms. This work is the first complete synthesis of the structural properties of 26 USP available in the Protein Data Bank, over 75% of which were determined by structure genomics centers with no additional information provided. The results of bioinformatic analyses of all available USP structures and their sequence homologs revealed that these two new USP structures share overall structural similarity with structures of USPs previously determined.
View Article and Find Full Text PDFThe explosion of the size of the universe of known protein sequences has stimulated two complementary approaches to structural mapping of these sequences: theoretical structure prediction and experimental determination by structural genomics (SG). In this work, we assess the accuracy of structure prediction by two automated template-based structure prediction metaservers (genesilico.pl and bioinfo.
View Article and Find Full Text PDFPhosphoglycerate kinase (PGK) is indispensable during glycolysis for anaerobic glucose degradation and energy generation. Here we present comprehensive structure analysis of two putative PGKs from Bacillus anthracis str. Sterne and Campylobacter jejuni in the context of their structural homologs.
View Article and Find Full Text PDFIsochorismatase-like hydrolases (IHL) constitute a large family of enzymes divided into five structural families (by SCOP). IHLs are crucial for siderophore-mediated ferric iron acquisition by cells. Knowledge of the structural characteristics of these molecules will enhance the understanding of the molecular basis of iron transport, and perhaps resolve which of the mechanisms previously proposed in the literature is the correct one.
View Article and Find Full Text PDFTwo archaeal tRNA methyltransferases belonging to the SPOUT superfamily and displaying unexpected activities are identified. These enzymes are orthologous to the yeast Trm10p methyltransferase, which catalyses the formation of 1-methylguanosine at position 9 of tRNA. In contrast, the Trm10p orthologue from the crenarchaeon Sulfolobus acidocaldarius forms 1-methyladenosine at the same position.
View Article and Find Full Text PDFSgm (Sisomicin-gentamicin methyltransferase) from antibiotic-producing bacterium Micromonospora zionensis is an enzyme that confers resistance to aminoglycosides like gentamicin and sisomicin by specifically methylating G1405 in bacterial 16S rRNA. Sgm belongs to the aminoglycoside resistance methyltransferase (Arm) family of enzymes that have been recently found to spread by horizontal gene transfer among disease-causing bacteria. Structural characterization of Arm enzymes is the key to understand their mechanism of action and to develop inhibitors that would block their activity.
View Article and Find Full Text PDFPolyamines are essential in all branches of life. Biosynthesis of spermidine, one of the most ubiquitous polyamines, is catalyzed by spermidine synthase (SpeE). Although the function of this enzyme from Escherichia coli has been thoroughly characterised, its structural details remain unknown.
View Article and Find Full Text PDF2'-O-ribose methylation is one of the most common posttranscriptional modifications in RNA. Methylations at different positions are introduced by enzymes from at least two unrelated superfamilies. Recently, a new family of eukaryotic RNA methyltransferases (MTases) has been identified, and its representative from yeast (Yol125w, renamed as Trm13p) has been shown to 2'-O-methylate position 4 of tRNA.
View Article and Find Full Text PDFMethylation is the most common RNA modification in the three domains of life. Transfer of the methyl group from S-adenosyl-l-methionine (AdoMet) to specific atoms of RNA nucleotides is catalyzed by methyltransferase (MTase) enzymes. The rRNA MTase RlmI (rRNA large subunit methyltransferase gene I; previously known as YccW) specifically modifies Escherichia coli 23S rRNA at nucleotide C1962 to form 5-methylcytosine.
View Article and Find Full Text PDFN(1)-methylation of adenosine to m(1)A occurs in several different positions in tRNAs from various organisms. A methyl group at position N(1) prevents Watson-Crick-type base pairing by adenosine and is therefore important for regulation of structure and stability of tRNA molecules. Thus far, only one family of genes encoding enzymes responsible for m(1)A methylation at position 58 has been identified, while other m(1)A methyltransferases (MTases) remain elusive.
View Article and Find Full Text PDFMethyltransferases that carry out posttranscriptional N7-methylation of G1405 in 16S rRNA confer bacterial resistance to aminoglycoside antibiotics, including kanamycin and gentamicin. Genes encoding enzymes from this family (hereafter referred to as Arm, for aminoglycoside resistance methyltransferases) have been recently found to spread by horizontal gene transfer between various human pathogens. The knowledge of the Arm protein structure would lay the groundwork for the development of potential resistance inhibitors, which could be used to restore the potential of aminoglycosides to act against the resistant pathogens.
View Article and Find Full Text PDFRNA methyltransferases (MTases) are important players in the biogenesis and regulation of the ribosome, the cellular machine for protein synthesis. RsmC is a MTase that catalyzes the transfer of a methyl group from S-adenosyl-l-methionine (SAM) to G1207 of 16S rRNA. Mutations of G1207 have dominant lethal phenotypes in Escherichia coli, underscoring the significance of this modified nucleotide for ribosome function.
View Article and Find Full Text PDFA psychrotrophic bacterium producing a cold-adapted esterase upon growth at low temperatures was isolated from the alimentary tract of Antarctic krill Euphasia superba Dana, and classified as Pseudoalteromonas sp. strain 643A. A genomic DNA library of strain 643A was introduced into Escherichia coli TOP10F', and screening on tributyrin-containing agar plates led to the isolation of esterase gene.
View Article and Find Full Text PDFBackground: SPOUT methyltransferases (MTases) are a large class of S-adenosyl-L-methionine-dependent enzymes that exhibit an unusual alpha/beta fold with a very deep topological knot. In 2001, when no crystal structures were available for any of these proteins, Anantharaman, Koonin, and Aravind identified homology between SpoU and TrmD MTases and defined the SPOUT superfamily. Since then, multiple crystal structures of knotted MTases have been solved and numerous new homologous sequences appeared in the databases.
View Article and Find Full Text PDFBackground: Naturally occurring tRNAs contain numerous modified nucleosides. They are formed by enzymatic modification of the primary transcripts during the complex RNA maturation process. In model organisms Escherichia coli and Saccharomyces cerevisiae most enzymes involved in this process have been identified.
View Article and Find Full Text PDFBackground: Recently, HEN1 protein from Arabidopsis thaliana was discovered as an essential enzyme in plant microRNA (miRNA) biogenesis. HEN1 transfers a methyl group from S-adenosylmethionine to the 2'-OH or 3'-OH group of the last nucleotide of miRNA/miRNA* duplexes produced by the nuclease Dicer. Previously it was found that HEN1 possesses a Rossmann-fold methyltransferase (RFM) domain and a long N-terminal extension including a putative double-stranded RNA-binding motif (DSRM).
View Article and Find Full Text PDFIn the course of CASP6, we generated models for all targets using a new version of the "FRankenstein's monster approach." Previously (in CASP5) we were able to build many very accurate full-atom models by selection and recombination of well-folded fragments obtained from crude fold recognition (FR) results, followed by optimization of the sequence-structure fit and assessment of alternative alignments on the structural level. This procedure was however very arduous, as most of the steps required extensive visual and manual input from the human modeler.
View Article and Find Full Text PDF