Publications by authors named "Karolina Kauppi"

Background: DNA methylation (DNAm), an epigenetic mark reflecting both inherited and environmental influences, has shown promise for Alzheimer's disease (AD) prediction.

Objective: Testing long-term predictive ability (>15 years) of existing DNAm-based epigenetic age acceleration (EAA) measures and identifying novel early blood-based DNAm AD-prediction biomarkers.

Methods: EAA measures calculated from Illumina EPIC data from blood were tested with linear mixed-effects models (LMMs) in a longitudinal case-control sample (50 late-onset AD cases; 51 matched controls) with prospective data up to 16 years before clinical onset, and post-onset follow-up.

View Article and Find Full Text PDF

The hippocampus is affected early in Alzheimer's disease (AD) and altered hippocampal functioning influences normal cognitive aging. Here, we used task-based functional MRI to assess if the APOE ɛ4 allele or a polygenic risk score (PRS) for AD was linked to longitudinal changes in memory-related hippocampal activation in normal aging (baseline age 50-95, n = 292; n = 182 at 4 years follow-up, subsequently non-demented for at least 2 years). Mixed-models were used to predict level and change in hippocampal activation by APOE ɛ4 status and PRS based on gene variants previously linked to AD at p ≤ 1, p < 0.

View Article and Find Full Text PDF

Apolipoprotein E (APOE) ε4, the strongest genetic risk factor for late onset Alzheimer's disease (LOAD), has been associated with cognitive decline independent from AD pathology, but the role for other LOAD risk genes in normal cognitive aging is less studied. We examined the effect of APOE ε4 and several different polygenic risk scores (PRS) for LOAD on cognitive level and decline in aging, using longitudinal data from the UK Biobank. While PRS-LOAD including all variants (except APOE) predicted cognitive level, APOE ε4 and PRS-LOAD based on 17 non-APOE gene variants with strong association to AD (p < 5e-8) predicted age-related decline in verbal numeric reasoning.

View Article and Find Full Text PDF

Purpose: To investigate the longitudinal effect of using and discontinuing central nervous system (CNS) medications on cognitive performance.

Methods: Using longitudinal cognitive data from population representative adults aged 25-100 years (N = 2188) from four test waves 5 years apart, we investigated both the link between use of CNS medications (opioids, anxiolytics, hypnotics and sedatives) on cognitive task performance (episodic memory, semantic memory, visuospatial ability) across 15 years, and the effect of discontinuing these medications in linear mixed effects models.

Results: We found that opioid use was associated with decline in visuospatial ability whereas using anxiolytics, hypnotics and sedatives was not associated with cognitive decline over 15 years.

View Article and Find Full Text PDF

In the protein-protein interactome, we have previously identified a significant overlap between schizophrenia risk genes and genes associated with cognitive performance. Here, we further studied this overlap to identify potential candidate drugs for repurposing to treat the cognitive symptoms in schizophrenia. We first defined a cognition-related schizophrenia interactome from network propagation analyses, and identified drugs known to target more than one protein within this network.

View Article and Find Full Text PDF

Genetic risk for schizophrenia has a negative impact on memory and other cognitive abilities in unaffected individuals, and it was recently shown that this effect is specific to males. Using functional MRI, we investigated the effect of a polygenic risk score (PRS) for schizophrenia on brain activation during working memory and episodic memory in 351 unaffected participants (167 males and 184 females, 25-95 years), and specifically tested if any effect of PRS on brain activation is sex-specific. Schizophrenia PRS was significantly associated with decreased brain activation in the left dorsolateral prefrontal cortex (DLPFC) during working-memory manipulation and in the bilateral superior parietal lobule (SPL) during episodic-memory encoding and retrieval.

View Article and Find Full Text PDF

Polygenic risk for schizophrenia has been associated with lower cognitive ability and age-related cognitive change in healthy individuals. Despite well-established neuropsychological sex differences in schizophrenia patients, genetic studies on sex differences in schizophrenia in relation to cognitive phenotypes are scarce. Here, we investigated whether the effect of a polygenic risk score (PRS) for schizophrenia on childhood, midlife, and late-life cognitive function in healthy individuals is modified by sex, and if PRS is linked to accelerated cognitive decline.

View Article and Find Full Text PDF

Background: Leukocyte telomere length (LTL) has been shown to predict Alzheimer's disease (AD), albeit inconsistently. Failing to account for the competing risks between AD, other dementia types, and mortality, can be an explanation for the inconsistent findings in previous time-to-event analyses. Furthermore, previous studies indicate that the association between LTL and AD is non-linear and may differ depending on apolipoprotein E (APOE) ε4 allele carriage, the strongest genetic AD predictor.

View Article and Find Full Text PDF

Leukocyte telomere length (LTL) is a proposed biomarker for aging-related disorders, including cognitive decline and dementia. Long-term longitudinal studies measuring intra-individual changes in both LTL and cognitive outcomes are scarce, precluding strong conclusions about a potential aging-related relationship between LTL shortening and cognitive decline. This study investigated associations between baseline levels and longitudinal changes in LTL and memory performance across an up to 20-year follow-up in 880 dementia-free participants from a population-based study (mean baseline age: 56.

View Article and Find Full Text PDF

Individual differences in cognitive performance increase with advancing age, reflecting marked cognitive changes in some individuals along with little or no change in others. Genetic and lifestyle factors are assumed to influence cognitive performance in ageing by affecting the magnitude and extent of age-related brain changes (i.e.

View Article and Find Full Text PDF

Most people's cognitive abilities decline with age, with significant and partly genetically driven, individual differences in rate of change. Although APOE ɛ4 and genetic scores for late-onset Alzheimer's disease (LOAD) have been related to cognitive decline during preclinical stages of dementia, there is limited knowledge concerning genetic factors implied in normal cognitive aging. In the present study, we examined three potential genetic predictors of age-related cognitive decline as follows: (1) the APOE ɛ4 allele, (2) a polygenic score for general cognitive ability (PGS-cog), and (3) a polygenic risk score for late-onset AD (PRS-LOAD).

View Article and Find Full Text PDF

Cognitive impairments constitute a core feature of schizophrenia, and a genetic overlap between schizophrenia and cognitive functioning in healthy individuals has been identified. However, due to the high polygenicity and complex genetic architecture of both traits, overlapping biological pathways have not yet been identified between schizophrenia and normal cognitive ability. Network medicine offers a framework to study underlying biological pathways through protein-protein interactions among risk genes.

View Article and Find Full Text PDF

The risk of APOE for Alzheimer's disease (AD) is modified by age. Beyond APOE, the polygenic architecture may also be heterogeneous across age. We aim to investigate age-related genetic heterogeneity of AD and identify genomic loci with differential effects across age.

View Article and Find Full Text PDF

Mounting evidence indicates that the polygenic basis of late-onset Alzheimer's disease can be harnessed to identify individuals at greatest risk for cognitive decline. We have previously developed and validated a polygenic hazard score comprising of 31 single nucleotide polymorphisms for predicting Alzheimer's disease dementia age of onset. In this study, we examined whether polygenic hazard scores are associated with: (i) regional tracer uptake using amyloid PET; (ii) regional volume loss using longitudinal MRI; (iii) post-mortem regional amyloid-β protein and tau associated neurofibrillary tangles; and (iv) four common non-Alzheimer's pathologies.

View Article and Find Full Text PDF

Motivation: Multiple marker analysis of the genome-wide association study (GWAS) data has gained ample attention in recent years. However, because of the ultra high-dimensionality of GWAS data, such analysis is challenging. Frequently used penalized regression methods often lead to large number of false positives, whereas Bayesian methods are computationally very expensive.

View Article and Find Full Text PDF

Improved prediction of progression to Alzheimer's Disease (AD) among older individuals with mild cognitive impairment (MCI) is of high clinical and societal importance. We recently developed a polygenic hazard score (PHS) that predicted age of AD onset above and beyond . Here, we used data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) to further explore the potential clinical utility of PHS for predicting AD development in older adults with MCI.

View Article and Find Full Text PDF

Objective: Antipsychotic drugs were incidentally discovered in the 1950s, but their mechanisms of action are still not understood. Better understanding of schizophrenia pathogenesis could shed light on actions of current drugs and reveal novel "druggable" pathways for unmet therapeutic needs. Recent genome-wide association studies offer unprecedented opportunities to characterize disease gene networks and uncover drug-disease relationships.

View Article and Find Full Text PDF

There is an urgent need for identifying nondemented individuals at the highest risk of progressing to Alzheimer's disease (AD) dementia. Here, we evaluated whether a recently validated polygenic hazard score (PHS) can be integrated with known in vivo cerebrospinal fluid (CSF) or positron emission tomography (PET) biomarkers of amyloid, and CSF tau pathology to prospectively predict cognitive and clinical decline in 347 cognitive normal (CN; baseline age range = 59.7-90.

View Article and Find Full Text PDF

Discovering genetic variants associated with human brain structures is an on-going effort. The ENIGMA consortium conducted genome-wide association studies (GWAS) with standard multi-study analytical methodology and identified several significant single nucleotide polymorphisms (SNPs). Here we employ a novel analytical approach that incorporates functional genome annotations (e.

View Article and Find Full Text PDF

Neuroticism reflects emotional instability, and is related to various mental and physical health issues. However, the majority of genetic variants associated with neuroticism remain unclear. Inconsistent genetic variants identified by different genome-wide association studies (GWAS) may be attributable to low statistical power.

View Article and Find Full Text PDF

Identifying asymptomatic older individuals at elevated risk for developing Alzheimer disease (AD) is of clinical importance. Among 1,081 asymptomatic older adults, a recently validated polygenic hazard score (PHS) significantly predicted time to AD dementia and steeper longitudinal cognitive decline, even after controlling for APOE ɛ4 carrier status. Older individuals in the highest PHS percentiles showed the highest AD incidence rates.

View Article and Find Full Text PDF

Importance: Schizophrenia is associated with widespread cognitive impairments. Although cognitive deficits are one of the factors most strongly associated with functional outcome in schizophrenia, current treatment strategies largely fail to ameliorate these impairments. To develop more efficient treatment strategies in patients with schizophrenia, a better understanding of the pathogenesis of these cognitive deficits is needed.

View Article and Find Full Text PDF

Background: Identifying individuals at risk for developing Alzheimer disease (AD) is of utmost importance. Although genetic studies have identified AD-associated SNPs in APOE and other genes, genetic information has not been integrated into an epidemiological framework for risk prediction.

Methods And Findings: Using genotype data from 17,008 AD cases and 37,154 controls from the International Genomics of Alzheimer's Project (IGAP Stage 1), we identified AD-associated SNPs (at p < 10-5).

View Article and Find Full Text PDF

Personality is influenced by genetic and environmental factors and associated with mental health. However, the underlying genetic determinants are largely unknown. We identified six genetic loci, including five novel loci, significantly associated with personality traits in a meta-analysis of genome-wide association studies (N = 123,132-260,861).

View Article and Find Full Text PDF