The great success of point defects and dopants in semiconductors for quantum information processing has invigorated a search for molecules with analogous properties. Flexibility and tunability of desired properties in a large chemical space have great advantages over solid-state systems. The properties analogous to point defects were demonstrated in the Cr(IV)-based molecular family, Cr(IV)(aryl), where the electronic spin states were optically initialized, read out, and controlled.
View Article and Find Full Text PDFWe perform density functional calculations to understand the mechanism controlling the confinement width of the two-dimensional electron gas (2DEG) at LaAlO_{3}/SrTiO_{3} interfaces. We find that the 2DEG confinement can be explained by the formation of metal induced gap states (MIGS) in the band gap of SrTiO3. These states are formed as the result of quantum-mechanical tunneling of the charge created at the interface due to electronic reconstruction.
View Article and Find Full Text PDF