Publications by authors named "Karolina Heyduk"

Premise: Competition from naturalized species and habitat loss are common threats to native biodiversity and may act synergistically to increase competition for decreasing habitat availability. We use Hawaiian dryland ferns as a model for the interactions between land-use change and competition from naturalized species in determining habitat availability.

Methods: We used fine-resolution climatic variables and carefully curated occurrence data from herbaria and community science repositories to estimate the distributions of Hawaiian dryland ferns.

View Article and Find Full Text PDF
Article Synopsis
  • The subgenus Tillandsia is part of a rapidly evolving group of plants known for their unique water-saving adaptation called Crassulacean acid metabolism (CAM), which has independently evolved in various plant families.
  • Researchers analyzed the genomes of two Tillandsia species with different photosynthetic traits to understand how CAM evolved, discovering that significant genomic rearrangements and a dynamic landscape of transposable elements influenced their genomes.
  • The study found that changes in how photosynthesis is regulated played a key role in CAM evolution, with certain significant gene families expanding in the species that use CAM, although the actual DNA sequences of these genes weren't under strong selection pressure.
View Article and Find Full Text PDF

Plants with Crassulacean acid metabolism (CAM) have long been associated with a specialized anatomy, including succulence and thick photosynthetic tissues. Firm, quantitative boundaries between non-CAM and CAM plants have yet to be established - if they indeed exist. Using novel computer vision software to measure anatomy, we combined new measurements with published data across flowering plants.

View Article and Find Full Text PDF

Premise: The use of DNA from herbarium specimens is an increasingly important source for evolutionary studies in plant biology, particularly in cases where species are rare or difficult to obtain. Here we compare the utility of DNA from herbarium tissues to their freezer-stored DNA counterparts via the Hawaiian Plant DNA Library.

Methods: Plants collected for the Hawaiian Plant DNA Library were simultaneously accessioned as herbarium specimens at the time of collection, from 1994-2019.

View Article and Find Full Text PDF

Crassulacean acid metabolism - or CAM photosynthesis - was described in the early to mid-20th century, and our understanding of this metabolic pathway was later expanded upon through detailed biochemical analyses of carbon balance. Soon after, scientists began to study the ecophysiological implications of CAM, and a large part of this early work was conducted in the genus Agave, in the subfamily Agavoideae of the family Asparagaceae. Today, the Agavoideae continues to be important for the study of CAM photosynthesis, from the ecophysiology of CAM species, to the evolution of the CAM phenotype and to the genomics underlying CAM traits.

View Article and Find Full Text PDF

We assess relationships among 192 species in all 12 monocot orders and 72 of 77 families, using 602 conserved single-copy (CSC) genes and 1375 benchmarking single-copy ortholog (BUSCO) genes extracted from genomic and transcriptomic datasets. Phylogenomic inferences based on these data, using both coalescent-based and supermatrix analyses, are largely congruent with the most comprehensive plastome-based analysis, and nuclear-gene phylogenomic analyses with less comprehensive taxon sampling. The strongest discordance between the plastome and nuclear gene analyses is the monophyly of a clade comprising Asparagales and Liliales in our nuclear gene analyses, versus the placement of Asparagales and Liliales as successive sister clades to the commelinids in the plastome tree.

View Article and Find Full Text PDF

Crassulacean acid metabolism (CAM) is a mode of photosynthesis that evolved in response to decreasing CO2 levels in the atmosphere some 20 million years ago. An elevated ratio of O2 relative to CO2 caused many plants to face increasing stress from photorespiration, a process exacerbated for plants living under high temperatures or in water-limited environments. Today, our climate is again rapidly changing and plants' ability to cope with and adapt to these novel environments is critical for their success.

View Article and Find Full Text PDF

Crassulacean acid metabolism (CAM) photosynthesis has evolved repeatedly across the plant tree of life, however our understanding of the genetic convergence across independent origins remains hampered by the lack of comparative studies. Here, we explore gene expression profiles in eight species from the Agavoideae (Asparagaceae) encompassing three independent origins of CAM. Using comparative physiology and transcriptomics, we examined the variable modes of CAM in this subfamily and the changes in gene expression across time of day and between well watered and drought-stressed treatments.

View Article and Find Full Text PDF

Hybridization in plants results in phenotypic and genotypic perturbations that can have dramatic effects on hybrid physiology, ecology, and overall fitness. Hybridization can also perturb epigenetic control of transposable elements, resulting in their proliferation. Understanding the mechanisms that maintain genomic integrity after hybridization is often confounded by changes in ploidy that occur in hybrid plant species.

View Article and Find Full Text PDF

Succulent leaves have long intrigued biologists; much research has been done to define succulence, understand the evolutionary trajectory and implications of leaf succulence, and contextualize the ecological importance of water storage for plants inhabiting dry habitats, particularly those using CAM photosynthesis. Surprisingly little is understood about the molecular regulation of leaf succulence, despite advances in our understanding of the molecular foundation of leaf architecture in model systems. Moreover, leaf succulence is a drought avoidance trait, one that has yet to be fully used for crop improvement.

View Article and Find Full Text PDF

Background And Aims: Crassulacean acid metabolism (CAM) is often considered to be a complex trait, requiring orchestration of leaf anatomy and physiology for optimal performance. However, the observation of trait correlations is based largely on comparisons between C3 and strong CAM species, resulting in a lack of understanding as to how such traits evolve and the level of intraspecific variability for CAM and associated traits.

Methods: To understand intraspecific variation for traits underlying CAM and how these traits might assemble over evolutionary time, we conducted detailed time course physiological screens and measured aspects of leaf anatomy in 24 genotypes of a C3+CAM hybrid species, Yucca gloriosa (Asparagaceae).

View Article and Find Full Text PDF

The tree of life is resplendent with examples of convergent evolution, whereby distinct species evolve the same trait independently. Many highly convergent adaptations are also complex, which makes their repeated emergence surprising. In plants, the evolutionary history of two carbon concentrating mechanisms (CCMs) - C and crassulacean acid metabolism (CAM) photosynthesis - presents such a paradox.

View Article and Find Full Text PDF

Crassulacean acid metabolism (CAM) is a carbon-concentrating mechanism that has evolved numerous times across flowering plants and is thought to be an adaptation to water-limited environments. CAM has been investigated from physiological and biochemical perspectives, but little is known about how plants evolve from C3 to CAM at the genetic or metabolic level. Here we take a comparative approach in analyzing time-course data of C3, CAM, and C3+CAM intermediate Yucca (Asparagaceae) species.

View Article and Find Full Text PDF

Crassulacean acid metabolism (CAM) photosynthesis is a modification of the core C photosynthetic pathway that improves the ability of plants to assimilate carbon in water-limited environments. CAM plants fix CO mostly at night, when transpiration rates are low. All of the CAM pathway genes exist in ancestral C species, but the timing and magnitude of expression are greatly altered between C and CAM species.

View Article and Find Full Text PDF
Article Synopsis
  • High throughput sequencing is enhancing phylogenomic and gene expression studies, yet combining these two methods has been rare; this study focuses on carbon assimilation and gene expression patterns in Agavoideae species.
  • The research involved comparing gene expression across genera with varying CAM strength, using RNA-sequencing and analyzing gas exchange and acidity measurements to understand the impact of climate on these species.
  • Results revealed both common and distinct gene expression patterns between weak and strong CAM species, indicating key regulatory shifts in gene function and carbohydrate metabolism, paving the way for advancements in engineering CAM into crops.
View Article and Find Full Text PDF

Crassulacean acid metabolism (CAM) is a water-use efficient adaptation of photosynthesis that has evolved independently many times in diverse lineages of flowering plants. We hypothesize that convergent evolution of protein sequence and temporal gene expression underpins the independent emergences of CAM from C photosynthesis. To test this hypothesis, we generate a de novo genome assembly and genome-wide transcript expression data for Kalanchoë fedtschenkoi, an obligate CAM species within the core eudicots with a relatively small genome (~260 Mb).

View Article and Find Full Text PDF

Even though lateral movements of transposons across families and even phyla within multicellular eukaryotic kingdoms have been found, little is known about transposon transfer between the kingdoms Animalia and Plantae. We discovered a novel non-LTR retrotransposon, AdLINE3, in a wild peanut species. Sequence comparisons and phylogenetic analyses indicated that AdLINE3 is a member of the RTE clade, originally identified in a nematode and rarely reported in plants.

View Article and Find Full Text PDF

Crassulacean acid metabolism (CAM) is a modified form of photosynthesis that has arisen independently at least 35 times in flowering plants. The occurrence of CAM is often correlated with shifts to arid, semiarid, or epiphytic habits, as well as transitions in leaf morphology (e.g.

View Article and Find Full Text PDF

This data article provides data and supplemental materials referenced in "Nuclear phylogenomics of the palm subfamily Arecoideae (Arecaceae)" (Comer et al., 2016) [1]. Raw sequence reads generated for this study are available through the Sequence Read Archive (SRA Study Accession: SRP061467).

View Article and Find Full Text PDF

Palms (Arecaceae) include economically important species such as coconut, date palm, and oil palm. Resolution of the palm phylogeny has been problematic due to rapid diversification and slow rates of molecular evolution. The focus of this study is on relationships of the 14 tribes of subfamily Arecoideae and their inferred ancestral areas.

View Article and Find Full Text PDF

While the majority of plants use the typical C3 carbon metabolic pathway, ~6% of angiosperms have adapted to carbon limitation as a result of water stress by employing a modified form of photosynthesis known as Crassulacean acid metabolism (CAM). CAM plants concentrate carbon in the cells by temporally separating atmospheric carbon acquisition from fixation into carbohydrates. CAM has been studied for decades, but the evolutionary progression from C3 to CAM remains obscure.

View Article and Find Full Text PDF