Glucose is the main source of energy for the human brain. This paper presents a non-invasive technique to study metabolic changes caused by glucose in human brain cell lines. In this paper we present the spectroscopic characterization of human normal brain (NHA; astrocytes) and human cancer brain (CRL-1718; astrocytoma and U-87 MG; glioblastoma) control cell lines and cell lines upon supplementation with glucose.
View Article and Find Full Text PDFAltered metabolism of lipids is a key factor in many diseases including cancer. Therefore, investigations into the impact of unsaturated and saturated fatty acids (FAs) on human body homeostasis are crucial for understanding the development of lifestyle diseases. In this paper, we focus on the impact of palmitic (PA), linoleic (LA), and eicosapentaenoic (EPA) acids on human colon normal (CCD-18 Co) and cancer (Caco-2) single cells using Raman imaging and spectroscopy.
View Article and Find Full Text PDFBiochemical analysis of human normal bronchial cells (BEpiC) and human cancer lung cells (A549) has been performed by using Raman spectroscopy and Raman imaging. Our approach provides a biochemical compositional mapping of the main cell components: nucleus, mitochondria, lipid droplets, endoplasmic reticulum, cytoplasm and cell membrane. We proved that Raman spectroscopy and Raman imaging can distinguish successfully BEpiC and A549 cells.
View Article and Find Full Text PDFThe regular overconsumption of high-energy food (rich in lipids and sugars) results in elevated nutrient absorption in intestine and consequently excessive accumulation of lipids in many organs e.g.: liver, adipose tissue, muscles.
View Article and Find Full Text PDFFructose is one of the most important monosaccharides in the human diet that the human body needs for proper metabolism. This paper presents an approach to study biochemical changes caused by sugars in human normal bronchial cells (BEpiC) and human cancer lung cells (A549) by Raman spectroscopy and Raman imaging. Results after supplementation of human bronchial and lung cells with fructose are also discussed and compared with results obtained for pure human bronchial and lung cells.
View Article and Find Full Text PDFThis paper presents an approach to study biochemical changes in human normal bronchial cells (BEpiC) and human cancer lung cells (A549) by Raman spectroscopy and Raman imaging combined with chemometric methods. Based on Raman spectra and Raman imaging combined with chemometric methods we have proved that peaks at 845 cm, 2845 cm, 2936 cm, 1444 cm, 750 cm, 1126 cm, 1584 cm, can be treated as Raman biomarkers probing phosphorylation, lipid reprogramming, oxidative phosphorylation and changes in cholesterol and cytochrome in normal and cancer cells. Raman analysis of the bands at 845 cm, 2845 cm, 1444 cm, and 1126 cm in human cancer lung cells and human normal bronchial cells demonstrate enhanced phosphorylation and triglycerides de novo synthesis, reduced levels of cholesterol and cytochrome c in cancer cells.
View Article and Find Full Text PDFMaterials (Basel)
July 2023
The described research aimed to develop the properties of the conductive composite /poly(3,4-ethylenedioxy-thiophene-poly(4-lithium styrenesulfonic acid)/chitosan-AuNPs-glutaraldehyde/ (/PEDOT-PSSLi/chit-AuNPs-GA/) and to develop an electrochemical enzyme sensor based on this composite material and glassy carbon electrodes (GCEs). The composite was created via electrochemical production of an /EDOT-PSSLi/ layer on a glassy carbon electrode (GCE). This layer was covered with a glutaraldehyde cross-linked chitosan and doped with AuNPs.
View Article and Find Full Text PDFCancers of digestive tract such as colorectal cancer (CRC) and gastric cancer (GC) are the most commonly detected types of cancer worldwide and their origin can be associated with oxidative stress conditions. Commonly known and followed antioxidants, such as vitamin C and E, are widely considered as potential anti-cancer agents. Raman spectra have great potential in the biochemical characterization of matter based on the fact that each molecule has its own unique vibrational properties.
View Article and Find Full Text PDF