The development of new mechanisms of resistance among pathogens, the occurrence and transmission of genes responsible for antibiotic insensitivity, as well as cancer diseases have been a serious clinical problem around the world for over 50 years. Therefore, intense searching of new leading structures and active substances, which may be used as new drugs, especially against strain resistant to all available therapeutics, is very important. Dihydrofolate reductase (DHFR) has attracted a lot of attention as a molecular target for bacterial resistance over several decades, resulting in a number of useful agents.
View Article and Find Full Text PDFThe DNA as the depository of genetic information is a natural target for chemotherapy. A lot of anticancer and antimicrobial agents derive their biological activity from their selective interaction with DNA in the minor groove and from their ability to interfere with biological processes such as enzyme catalysis, replication and transcription. The discovery of the details of minor groove binding drugs, such as netropsin and distamycin A, oligoamides built of 4-amino-1-methylpyrrole-2-carboxylic acid residues, allowed to develop various DNA sequence-reading molecules, named lexitropsins, capable of interacting with DNA precisely, strongly and with a high specificity, and at the same time exhibiting significant cytotoxic potential.
View Article and Find Full Text PDF