Translation initiation in 50-70 % of transcripts in Escherichia coli requires base pairing between the Shine-Dalgarno (SD) motif in the mRNA and the anti-SD motif at the 3' end of the 16S rRNA. However, 30-50 % of E. coli transcripts are non-canonical and are not preceded by an SD motif.
View Article and Find Full Text PDFBacteria were long assumed to be monoploid, maintaining one copy of a circular chromosome. In recent years it became obvious that the majority of species in several phylogenetic groups of prokaryotes are oligoploid or polyploid. The present study aimed at investigating the ploidy in Gram-positive aerobic endospore-forming bacteria.
View Article and Find Full Text PDFIt is long known that Kasugamycin inhibits translation of canonical transcripts containing a 5'-UTR with a Shine Dalgarno (SD) motif, but not that of leaderless transcripts. To gain a global overview of the influence of Kasugamycin on translation efficiencies, the changes of the translatome of Escherichia coli induced by a 10 minutes Kasugamycin treatment were quantified. The effect of Kasugamycin differed widely, 102 transcripts were at least twofold more sensitive to Kasugamycin than average, and 137 transcripts were at least twofold more resistant, and there was a more than 100-fold difference between the most resistant and the most sensitive transcript.
View Article and Find Full Text PDFSynechocystis sp. PCC 6803 is a cyanobacterial model strain widely used to study many biological processes and is also applied for the production of biopolymers. Recently, it was reported that two of its substrains are highly polyploid.
View Article and Find Full Text PDFLive bacteria and archaea have been isolated from several rock salt deposits of up to hundreds of millions of years of age from all around the world. A key factor affecting their longevity is the ability to keep their genomic DNA intact, for which efficient repair mechanisms are needed. Polyploid microbes are known to have an increased resistance towards mutations and DNA damage, and it has been suggested that microbes from deeply buried rock salt would carry several copies of their genomes.
View Article and Find Full Text PDFThe investigated haloarchaeal species, Halobacterium salinarum, Haloferax mediterranei, and H. volcanii, have all been shown to be polyploid. They contain several replicons that have independent copy number regulation, and most have a higher copy number during exponential growth phase than in stationary phase.
View Article and Find Full Text PDFHaloferax volcanii uses extracellular DNA as a source for carbon, nitrogen, and phosphorous. However, it can also grow to a limited extend in the absence of added phosphorous, indicating that it contains an intracellular phosphate storage molecule. As Hfx.
View Article and Find Full Text PDFA method to grow the halophilic archaeon Haloferax volcanii in microtiter plates has been optimized and now allows the parallel generation of very reproducible growth curves. The doubling time in a synthetic medium with glucose is around 6 h. The method was used to optimize glucose and casamino acid concentrations, to clarify carbon source usage and to analyze vitamin dependence.
View Article and Find Full Text PDFHaloferax volcanii is highly polyploid and contains about 20 copies of the major chromosome. A heterozygous strain was constructed that contained two different types of genomes: the leuB locus contained either the wild-type leuB gene or a leuB:trpA gene introduced by gene replacement. As the trpA locus is devoid of the wild-type trpA gene, growth in the absence of both amino acids is only possible when both types of genomes are simultaneously present, exemplifying gene redundancy and the potential to form heterozygous cells as one possible evolutionary advantage of polyploidy.
View Article and Find Full Text PDFBacteria are generally assumed to be monoploid (haploid). This assumption is mainly based on generalization of the results obtained with the most intensely studied model bacterium, Escherichia coli (a gamma-proteobacterium), which is monoploid during very slow growth. However, several species of proteobacteria are oligo- or polyploid, respectively.
View Article and Find Full Text PDF