Publications by authors named "Karolin Wey"

Calcium phosphate nanoparticles were loaded with nucleic acids to enhance the on-growth of tissue to a cochlear implant electrode. The nanoparticle deposition on a metallic electrode surface is possible by electrophoretic deposition (EPD) or layer-by-layer deposition (LbL). Impedance spectroscopy showed that the coating layer did not interrupt the electrical conductance at physiological frequencies and beyond (1-40,000 Hz).

View Article and Find Full Text PDF

Hepatitis B virus (HBV) is a global health issue, but currently available anti-HBV drugs have limited success. Previously, introduction of the Toll-like receptor (TLR)-3 ligand poly(I:C) to the liver via hydrodynamic injection (HI) was shown to effectively suppress HBV replication in a chronic HBV replication mouse model. However, this method cannot be applied in human beings.

View Article and Find Full Text PDF

Ultrasmall metallic nanoparticles show an efficient autofluorescence after excitation in the UV region, combined with a low degree of fluorescent bleaching. Thus, they can be used as fluorescent labels for polymer nanoparticles which are frequently used for drug delivery. A versatile water-in-oil-in-water emulsion-evaporation method was developed to load poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles with autofluorescent ultrasmall gold and silver/gold nanoparticles (diameter 2 nm).

View Article and Find Full Text PDF

Ultrasmall gold nanoparticles (core diameter 2 nm) were surface-conjugated with azide groups by attaching the azide-functionalized tripeptide lysine(N)-cysteine-asparagine with ∼117 molecules on each nanoparticle. A covalent surface modification with alkyne-containing molecules was then possible by copper-catalyzed click chemistry. The successful clicking to the nanoparticle surface was demonstrated with C-labeled propargyl alcohol.

View Article and Find Full Text PDF

Synthetic composite materials that mimic the structure and composition of mammalian tooth enamel were prepared by mixing fluoroapatite rods (diameter 2-3 μm, thickness about 0.5 μm) and methylmethacrylate (MMA), followed by polymerization either during or immediately after ultracentrifugation, using either a tertiary amine/radical initiator for polymerization at room temperature or a radical initiator for thermal polymerization. This led to mineral-rich composites (mineral content between 50 and 75 wt%).

View Article and Find Full Text PDF