Publications by authors named "Karol Skowera"

Sugarcane vinasse wastewater (SVW) is one of the most voluminous waste generated in the ethanol industry and usually applied in fertigation. It is characterized by presenting high COD and BOD; thus, continued disposal of vinasse results in negative environmental impacts. In this paper, we investigated the potential of SVW in replacement of water in mortar, rethinking about reuse of effluent, reduction of pollutants in the environment, and water consumption in civil construction.

View Article and Find Full Text PDF

This article describes the use of recycled glass sand in the production of autoclaved products. Traditional autoclaved bricks consist of crystalline sand, lime and water. The conducted research aimed at the complete elimination of quartz sand in favor of glass sand.

View Article and Find Full Text PDF

This article analyzes the results of capillary rise, compressive strength and water absorption tests on solid ceramic bricks from existing structures and demolition materials taken from 11 different structures. In addition (for more extensive interpretation and evaluation of porosity), tests were performed for the selected series of bricks using a mercury porosimeter (MIP) and a micro computed tomography (micro-CT). Contemporary bricks (2 series) were also evaluated for comparison purposes.

View Article and Find Full Text PDF

Modernized technological processes or increasing demands on building materials force the scientific community to analyze in more detail the suitability of individual raw materials and deposits. New or modernized research methodologies make it possible to better understand not only the geometrical structure of the pore space of materials but also the processes taking place in them and the interaction of many factors at the same time. Despite the extensive literature in the field of research on capillary-porous materials, scientists still face many challenges because not everything is known.

View Article and Find Full Text PDF

A modified method of interpreting a heat flux differential scanning calorimetry records in pore structure determination is presented. The method consists of determining the true phase transition energy distribution due to the melting of water during a differential scanning calorimetry (DSC) heating run. A set of original apparatus functions was developed to approximate the recorded calorimetric signals to the actual processes of the water phase transition at a given temperature.

View Article and Find Full Text PDF