Publications by authors named "Karol Kramarz"

Nuclear pore complexes (NPCs) have emerged as genome organizers, defining a particular nuclear compartment enriched for SUMO protease and proteasome activities, and act as docking sites for the repair of DNA damage. In fission yeast, the anchorage of perturbed replication forks to NPCs is an integral part of the recombination-dependent replication restart mechanism (RDR) that resumes DNA synthesis at terminally dysfunctional forks. By mapping DNA polymerase usage, we report that SUMO protease Ulp1-associated NPCs ensure efficient initiation of restarted DNA synthesis, whereas proteasome-associated NPCs sustain the progression of restarted DNA polymerase.

View Article and Find Full Text PDF

Homologous recombination is a key process that governs the stability of eukaryotic genomes during DNA replication and repair. Multiple auxiliary factors regulate the choice of homologous recombination pathway in response to different types of replication stress. Using Schizosaccharomyces pombe we have previously suggested the role of DNA translocases Rrp1 and Rrp2, together with Srs2 helicase, in the common synthesis-dependent strand annealing sub-pathway of homologous recombination.

View Article and Find Full Text PDF

Cohesin is a highly conserved, multiprotein complex whose canonical function is to hold sister chromatids together to ensure accurate chromosome segregation. Cohesin association with chromatin relies on the Scc2-Scc4 cohesin loading complex that enables cohesin ring opening and topological entrapment of sister DNAs. To better understand how sister chromatid cohesion is regulated, we performed a proteomic screen in budding yeast that identified the Isw1 chromatin remodeler as a cohesin binding partner.

View Article and Find Full Text PDF

Multiple eukaryotic SWI2/SNF2 DNA translocases safeguard genome integrity, mostly by remodelling nucleosomes, but also by fine-tuning mechanisms of DNA repair, such as homologous recombination. Among this large family there is a unique class of Rad5/16-like enzymes, including Saccharomyces cerevisiae Uls1 and its Schizosaccharomyces pombe orthologues Rrp1 and Rrp2, that have both translocase and E3 ubiquitin ligase activities, and are often directed towards their substrates by SUMOylation. Here we summarize recent advances in understanding how different activities of these yeast proteins jointly contribute to their important roles in replication stress response particularly at centromeres and telomeres.

View Article and Find Full Text PDF

DNA lesions have properties that allow them to escape their nuclear compartment to achieve DNA repair in another one. Recent studies uncovered that the replication fork, when its progression is impaired, exhibits increased mobility when changing nuclear positioning and anchors to nuclear pore complexes, where specific types of homologous recombination pathways take place. In yeast models, increasing evidence points out that nuclear positioning is regulated by small ubiquitin-like modifier (SUMO) metabolism, which is pivotal to maintaining genome integrity at sites of replication stress.

View Article and Find Full Text PDF

Rad51 is the key protein in homologous recombination that plays important roles during DNA replication and repair. Auxiliary factors regulate Rad51 activity to facilitate productive recombination, and prevent inappropriate, untimely or excessive events, which could lead to genome instability. Previous genetic analyses identified a function for Rrp1 (a member of the Rad5/16-like group of SWI2/SNF2 translocases) in modulating Rad51 function, shared with the Rad51 mediator Swi5-Sfr1 and the Srs2 anti-recombinase.

View Article and Find Full Text PDF

Nuclear Pore complexes (NPCs) act as docking sites to anchor particular DNA lesions facilitating DNA repair by elusive mechanisms. Using replication fork barriers in fission yeast, we report that relocation of arrested forks to NPCs occurred after Rad51 loading and its enzymatic activity. The E3 SUMO ligase Pli1 acts at arrested forks to safeguard integrity of nascent strands and generates poly-SUMOylation which promote relocation to NPCs but impede the resumption of DNA synthesis by homologous recombination (HR).

View Article and Find Full Text PDF

The perturbation of the DNA replication process is a threat to genome stability and is an underlying cause of cancer development and numerous human diseases. It has become central to understanding how stressed replication forks are processed to avoid their conversion into fragile and pathological DNA structures. The engineering of replication fork barriers (RFBs) to conditionally induce the arrest of a single replisome at a defined locus has made a tremendous impact in our understanding of replication fork processing.

View Article and Find Full Text PDF

The regulation of telomere and centromere structure and function is essential for maintaining genome integrity. Rrp1 and Rrp2 are orthologues of Uls1, a SWI2/SNF2 DNA translocase and SUMO-targeted ubiquitin ligase. Here, we show that Rrp1 or Rrp2 overproduction leads to chromosome instability and growth defects, a reduction in global histone levels and mislocalisation of centromere-specific histone Cnp1.

View Article and Find Full Text PDF

Here, we investigate the function of fission yeast Fun30/Smarcad1 family of SNF2 ATPase-dependent chromatin remodeling enzymes in DNA damage repair. There are three Fun30 homologues in fission yeast, Fft1, Fft2, and Fft3. We find that only Fft3 has a function in DNA repair and it is needed for single-strand annealing of an induced double-strand break.

View Article and Find Full Text PDF

DNA damage tolerance and homologous recombination pathways function to bypass replication-blocking lesions and ensure completion of DNA replication. However, inappropriate activation of these pathways may lead to increased mutagenesis or formation of deleterious recombination intermediates, often leading to cell death or cancer formation in higher organisms. Post-translational modifications of PCNA regulate the choice of repair pathways at replication forks.

View Article and Find Full Text PDF

The Saccharomyces cerevisiae Uls1 belongs to the Swi2/Snf2 family of DNA-dependent ATPases and a new protein family of SUMO-targeted ubiquitin ligases. Here we show that Uls1 is implicated in DNA repair independently of the replication stress response pathways mediated by the endonucleases Mus81 and Yen1 and the helicases Mph1 and Srs2. Uls1 works together with Sgs1 and we demonstrate that the attenuation of replication stress-related defects in sgs1Δ by deletion of ULS1 depends on a functional of Rad51 recombinase and post-replication repair pathway mediated by Rad18 and Rad5, but not on the translesion polymerase, Rev3.

View Article and Find Full Text PDF

Previously we identified Rrp1 and Rrp2 as two proteins required for the Sfr1/Swi5-dependent branch of homologous recombination (HR) in Schizosaccharomyces pombe. Here we use a yeast two-hybrid approach to demonstrate that Rrp1 and Rrp2 can interact with each other and with Swi5, an HR mediator protein. Rrp1 and Rrp2 form co-localizing methyl methanesulphonate-induced foci in nuclei, further suggesting they function as a complex.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessioncbc46v38rvlmkthk2bgrceajjiec6843): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once