This work presents an approach to exploiting Nuclear Magnetic Resonance (NMR) relaxometry data (H spin-lattice relaxation rates covering the frequency range from below 1 kHz to 10 MHz) for the purpose of differentiating between pathological and reference tissues. Characteristic quantities (markers) that can be obtained in a straightforward manner, not resorting to an advanced analysis of H spin-lattice relaxation data, have been identified and compared for pathological and reference colon tissues. Moreover, the relaxation data have been parametrised in terms of Lorentzian spectral densities and the possibility of using the obtained dipolar relaxation constants and correlation times as biomarkers to assess the state of tissues has been discussed.
View Article and Find Full Text PDFH fast field-cycling and time-domain nuclear magnetic resonance relaxometry studies have been performed for 15 samples of sugar of different kinds and origins (brown, white, cane, beet sugar). The extensive data set, including results for crystal sugar and sugar/water mixtures, has been thoroughly analyzed, with a focus on identifying relaxation contributions associated with the solid and liquid fractions of the systems and non-exponentiality of the relaxation processes. It has been observed that H spin-lattice relaxation rates for crystal sugar (solid) vary between 0.
View Article and Find Full Text PDF1H spin-lattice relaxation studies have been performed for binary systems, including glycerol as the first component and alanine, glycine, and aspartic acid (with different levels of deuteration) as the second one. The relaxation studies have been performed in the frequency range from 10 kHz to 10 MHz vs temperature. A theoretical framework, including all relevant 1H-1H and 1H-2H relaxation pathways, has been formulated.
View Article and Find Full Text PDFH spin-lattice Nuclear Magnetic Resonance relaxation studies have been performed for different kinds of Haribo jelly and Vidal jelly in a very broad frequency range from about 10 kHz to 10 MHz to obtain insight into the dynamic and structural properties of jelly candies on the molecular level. This extensive data set has been thoroughly analyzed revealing three dynamic processes, referred to as slow, intermediate and fast dynamics occurring on the timescale of 10 s, 10 s and 10 s, respectively. The parameters have been compared for different kinds of jelly for the purpose of revealing their characteristic dynamic and structural properties as well as to enquire into how increasing temperature affects these properties.
View Article and Find Full Text PDFH spin-lattice relaxation experiments have been performed for water-Bovine Serum Albumin (BSA) mixtures, including 20%wt and 40%wt of BSA. The experiments have been carried out in a frequency range encompassing three orders of magnitude, from 10 kHz to 10 MHz, versus temperature. The relaxation data have been thoroughly analyzed in terms of several relaxation models with the purpose of revealing the mechanisms of water motion.
View Article and Find Full Text PDFF Nuclear Magnetic Resonance spin-lattice relaxation experiments have been performed for a series of ionic liquids including the same anion, bis(trifluoromethanesulfonyl)imide, and cations with alkyl chains of different lengths: triethylhexylammonium, triethyloctylammonium decyltriethylammonium, dodecyltriethylammonium, decyltriethylammonium, and hexadecyltriethylammonium. The experiments have been carried out in a frequency range of 10 kHz to 10 MHz versus temperature. A thorough analysis of the relaxation data has led to the determination of the cation-anion as a relative translation diffusion coefficient.
View Article and Find Full Text PDF