C and H NMR spectra were observed as the function of density in 1,2-C-enriched ethane and ethylene for the pure gaseous compounds and their binary mixtures with xenon and carbon dioxide gases as the solvents. All the chemical shifts and indirect spin-spin couplings were linearly dependent on the solvent density. The appropriate NMR parameters (σ and J) in isolated CH and CH molecules and the coefficients responsible for the binary molecular interactions were determined and compared with previous similar measurements and selected calculated shielding data.
View Article and Find Full Text PDFThe origin of nuclear magnetic shielding in diamagnetic molecules is discussed, pointing out various contributions to the shielding from electrons and the effects of intra- and intermolecular interactions. In NMR practice, chemical shifts are determined first as the measure of shielding in observed samples. The descriptions of shielding and chemical shifts are not fully consistent.
View Article and Find Full Text PDFAttempts at the theoretical interpretation of NMR spectra have a very long and fascinating history. Present quantum chemical calculations of shielding and indirect spin-spin couplings permit modeling NMR spectra when small, isolated molecules are studied. Similar data are also available from NMR experiments if investigations are performed in the gas phase.
View Article and Find Full Text PDFMagn Reson Chem
August 2020
Helium-3 nuclear magnetic resonance ( He NMR) measurements were carried out for the gaseous mixtures of helium-3 with pure nitrogen and synthetic air as the solvents. It was found that He shielding is linearly dependent on solvent density up to approx. 6 mol/L.
View Article and Find Full Text PDFTetramethylsilane (TMS) is well-known as a reference standard of H, C and Si NMR chemical shifts. In the present study, we have observed TMS molecules in gaseous and liquid solutions. In the gas phase, the shielding parameters of TMS are monitored as the functions of density when xenon and krypton are applied as the buffer gases.
View Article and Find Full Text PDFSmall amounts of water enriched in oxygen-17 were studied by 17O and 1H NMR in binary gaseous mixtures with Xe, Kr, CHF3 and CH3F and CO2. The distinct linear dependences of 17O and 1H chemical shifts and 1J(17O,1H) spin-spin coupling on the density of every gas solvent were measured. After the extrapolation of experimental results to zero density the relevant parameters in the isolated H217O molecule were determined.
View Article and Find Full Text PDFAn absolute shielding scale is proposed for (207)Pb nuclear magnetic resonance (NMR) spectroscopy. It is based on ab initio calculations performed on an isolated tetramethyllead Pb(CH3)4 molecule and the assignment of the experimental resonance frequency from the gas-phase NMR spectra of Pb(CH3)4, extrapolated to zero density of the buffer gas to obtain the result for an isolated molecule. The computed (207)Pb shielding constant is 10 790 ppm for the isolated molecule, leading to a shielding of 10799.
View Article and Find Full Text PDFThe spin-rotation and nuclear magnetic shielding constants are analysed for both nuclei in the HCl molecule. Nonrelativistic ab initio calculations at the CCSD(T) level of approximation show that it is essential to include relativistic effects to obtain spin-rotation constants consistent with accurate experimental data. Our best estimates for the spin-rotation constants of (1)H(35)Cl are CCl = -53.
View Article and Find Full Text PDFWe present the results of gas-phase NMR measurements designed to yield a new experimental value for the absolute (1)H magnetic shielding for an isolated hydrogen molecule and its deuterium isotopomers. The results are based on the original method of direct shielding measurements (Jackowski et al., 2010) and the density dependence of (1)H, (2)H, and (3)He NMR frequencies for molecular hydrogen and atomic helium-3.
View Article and Find Full Text PDFGas-phase nuclear magnetic resonance (NMR) spectra demonstrating the effect of weak intermolecular forces on the NMR shielding constants of the interacting species are reported. We analyse the interaction of the molecular hydrogen isotopomers with He, Ne, and Ar, and the interaction in the He-CO(2) dimer. The same effects are studied for all these systems in the ab initio calculations.
View Article and Find Full Text PDFAb initio values of the absolute shielding constants of phosphorus and hydrogen in PH(3) were determined, and their accuracy is discussed. In particular, we analyzed the relativistic corrections to nuclear magnetic resonance (NMR) shielding constants, comparing the constants computed using the four-component Dirac-Hartree-Fock approach, the four-component density functional theory (DFT), and the Breit-Pauli perturbation theory (BPPT) with nonrelativistic Hartree-Fock or DFT reference functions. For the equilibrium geometry, we obtained σ(P) = 624.
View Article and Find Full Text PDFWe have performed the direct measurements of (13)C magnetic shielding for pure liquid TMS, solution of 1% TMS in CDCl3 and solid fullerene. The measurements were carried out in spherical ampoules exploring the relation between the resonance frequencies, shielding constants and magnetic moments of (13)C and (3)He nuclei. Next the (13)C shielding constants of glycine, hexamethylbenzene and adamantane were established on the basis of appropriate chemical shifts measured in the solid state.
View Article and Find Full Text PDFExploring the relation between shielding constants, resonance frequencies and magnetic moments of the nuclei we demonstrate that nuclear magnetic shielding can be directly observed from NMR spectra. In this approach, the absolute shielding constants of all the nuclei can be related to a single reference scale, with atomic (3)He as the primary standard. The accuracy of the data obtained using our method is confirmed comparing the (1)H and (13)C shielding constants for a series of deuterated compounds with those determined analyzing the traditional chemical shifts.
View Article and Find Full Text PDFThe (1)J((11)B(19)F) spin-spin coupling of gaseous BF(3) was observed in (11)B NMR spectra as a function of density in a wide range of temperatures. Following the extrapolation of the measured values to the zero-density limit, the coupling constant free from intermolecular effects (1)J(0)((11)B(19)F) was obtained for each temperature. In contrast to previous investigations, the final results indicate a nonlinear dependence of (1)J(0)((11)B(19)F) on temperature.
View Article and Find Full Text PDFGas-phase NMR spectra of (11)B, (10)B, and (19)F in BF(3) are reported, and high-level ab initio calculations of the corresponding NMR shielding constants are described. Extrapolation of the measured resonance frequencies to the zero-density limit ensures that the results correspond to the ab initio values for an isolated molecule. Simultaneous measurements of (3)He resonance frequencies and application of the calculated shielding constants allow us to determine improved values of the nuclear magnetic dipole moments of (11)B and (10)B.
View Article and Find Full Text PDFWe present new gas-phase NMR spectra which relate the resonance frequency of (3)He nucleus to the resonance frequency of the proton in tetramethylsilane (TMS). We discuss the dependence of (3)He resonance frequency on the density of the solvent gas, and we consider in detail the absolute shielding scales of both nuclei. Finally, we analyse the accuracy of the results, using the relationship between the resonance frequencies, absolute shielding constants and magnetic dipole moments of (1)H and (3)He nuclei.
View Article and Find Full Text PDF