Optical fibre sensors have the potential to be overly sensitive and responsive, making them useful in various applications to detect the presence of pollutants in the environment, toxic gasses, or pesticides in soil. Deoxyribonucleic acid (DNA) as biopolymer active surfaces for fibre sensors can be designed to detect specific molecules or compounds accurately. In the article, we propose to use an optical fibre taper and DNA complex with surfactant-based sensors to offer a promising approach for gas detection, including ammonia solution, 1,4 thioxane, and trimethyl phosphate imitating hazardous agents.
View Article and Find Full Text PDFThe presented research shows the possibilities of creating in-line magnetic sensors based on the detection of changes of light propagation parameters, especially polarization, obtained by mixing FeO nanoparticles with hexadecane (higher alkane) surrounding a biconical optical fiber taper. The fiber optic taper allows to directly influence light parameters inside the taper without the necessity to lead the beam out of the structure. The mixture of hexadecane and FeO nanoparticles forms a special cladding surrounding a fiber taper which can be controlled by external factors such as the magnetic field.
View Article and Find Full Text PDFThis paper presents a study of the influence of bimetallic layer covers of a tapered optical fiber surrounded by a low refractive index liquid crystal on the properties of light propagation in the taper structure. This research follows previous works on the effect of monometallic thin films (Au and Ag). In this case, the total thicknesses of the bimetallic layers were = 10 nm, and the participation of gold and silver was equal.
View Article and Find Full Text PDFThis paper presents the results of a study on the possibility of detecting organosulfur and organophosphorus compounds by means of polymer-assisted optical fiber technology. The detection of the aforementioned compounds can be realized by fabricating a polymer-coated tapered optical fiber (TOF), where the polymer works as an absorber, which changes the light propagation conditions in the TOF. The TOFs were manufactured based on a standard single-mode fiber for telecommunication purposes and, as an absorbing polymer, hexafluorobutyl acrylate was used, which is sensitive to organosulfur and organophosphorus compounds.
View Article and Find Full Text PDFThis paper is a continuation of previous work and shows the enhancement of the surface plasmon resonance effect in a tapered optical fiber device. The study investigated liquid crystal cells containing a tapered optical fiber covered with a silver nanolayer, surrounded by a low refractive index liquid crystal in terms of the properties of light propagation in the taper structure. Silver films with a thickness of = 10 nm were deposited on the tapered waist area.
View Article and Find Full Text PDFThis study presents the doping of higher alkanes, namely, pentadecane (C15) and hexadecane (C16), with ZnS:Mn nanoparticles to create new types of in-line optical fiber sensors with unique optical properties. In this research, the phenomenon of light beam leakage out of the taper and its interaction with the surrounding materials is described. The fabricated new materials are used as cladding in a tapered optical fiber to make it possible to control the optical light beam.
View Article and Find Full Text PDFThe paper investigates the effect of thermo-optic switching resulting from the hybrid combination of a tapered optical fiber (TOF) with alkanes doped with nanoparticles of zinc sulfide doped with manganese (ZnS:Mn NP). Presented measurements focused on controlling losses in an optical fiber by modification of a TOF cladding by the alkanes used, characterized by phase change. Temperature changes cause power transmission changes creating a switcher or a sensor working in an ON-OFF mode.
View Article and Find Full Text PDFThis paper presents the influence of a thin metal layer deposition on the surface of a tapered optical fiber surrounded by a low liquid crystal, on light propagation inside the taper structure. In this research, three types of liquid crystal cells were under investigation: orthogonal, parallel, and twist. They differed by the rubbing direction of the electrodes in relation to the fiber axis determining the initial molecule arrangement inside the cell.
View Article and Find Full Text PDF