Low-melting liquid metals are emerging as a new group of highly functional solvents due to their capability to dissolve and alloy various metals in their elemental state to form solutions as well as colloidal systems. Furthermore, these liquid metals can facilitate and catalyze multiple unique chemical reactions. Despite the intriguing science behind liquid metals and alloys, very little is known about their fundamental structures in the nanometric regime.
View Article and Find Full Text PDFCrystallization of alloys from a molten state is a fundamental process underpinning metallurgy. Here the direct imaging of an intermetallic precipitation reaction at equilibrium in a liquid-metal environment is demonstrated. It is shown that the outer layers of a solidified intermetallic are surprisingly unstable to the depths of several nanometers, fluctuating between a crystalline and a liquid state.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2022
Low melting point liquid metal alloys are progressively utilized in different research fields due to their unique physicochemical properties. Among them, EGaIn is liquid at room temperature with an excellent solubility for reactive metal atoms such as Al. Combined with their characteristic flexible surface, large area and atomically flat interfaces, a library of two-dimensional materials can be generated.
View Article and Find Full Text PDF