Publications by authors named "Karlis Freivalds"

We present hybrid system-based gene regulatory network models for lambda, HK022, and Mu bacteriophages together with dynamics analysis of the modeled networks. The proposed lambda phage model LPH2 is based on an earlier work and incorporates more recent biological assumptions about the underlying gene regulatory mechanism, HK022, and Mu phage models are new. All three models provide accurate representations of experimentally observed lytic and lysogenic behavioral cycles.

View Article and Find Full Text PDF

Mass spectrometry (MS)-based quantitative proteomics experiments typically assay a subset of up to 60% of the ≈20 000 human protein coding genes. Computational methods for imputing the missing values using RNA expression data usually allow only for imputations of proteins measured in at least some of the samples. In silico methods for comprehensively estimating abundances across all proteins are still missing.

View Article and Find Full Text PDF

Current high-throughput experimental techniques make it feasible to infer gene regulatory interactions at the whole-genome level with reasonably good accuracy. Such experimentally inferred regulatory networks have become available for a number of simpler model organisms such as , and others. The availability of such networks provides an opportunity to compare gene regulatory processes at the whole genome level, and in particular, to assess similarity of regulatory interactions for homologous gene pairs either from the same or from different species.

View Article and Find Full Text PDF

Background: Current Hi-C technologies for chromosome conformation capture allow to understand a broad spectrum of functional interactions between genome elements. Although significant progress has been made into analysis of Hi-C data to identify biologically significant features, many questions still remain open, in particular regarding potential biological significance of various topological features that are characteristic for chromatin interaction networks.

Results: It has been previously observed that promoter capture Hi-C (PCHi-C) interaction networks tend to separate easily into well-defined connected components that can be related to certain biological functionality, however, such evidence was based on manual analysis and was limited.

View Article and Find Full Text PDF