Environ Monit Assess
February 2023
The current global condition characterized by high levels of CO is altering the carbon cycle and elemental biogeochemistry, resulting in subsequent global warming, climate change, ocean acidification, and the indirect response of deoxygenation. The features of Indonesia's coastal ecosystems and continental shelf waters also contribute to spatio-temporal ocean carbon variability. For instance, the level of particulate organic carbon (POC) will change annually, and thus, over a decadal period, ocean dynamics may affect the temporal variability of POC.
View Article and Find Full Text PDFDeoxygenation is increasingly recognized as a significant environmental threat to the ocean following sea temperature rises due to global warming and climate change. Considering the cruciality of the deoxygenation impacts, it is important to assess the current status and predict the future possibility of ocean deoxygenation, for instance, within the Central Indo Pacific (CIP) regions represent climate-regulated marine areas. This study divided CIP into five regions then investigated the deoxygenation parameters (dissolved oxygen, temperature, salinity, and pH) collected from 1993 to 2021 sourced from in situ measurement and long-term hindcast data.
View Article and Find Full Text PDF