Cell-surface signaling (CSS) is a signal transfer system of Gram-negative bacteria that produces the activation of an extracytoplasmic function σ factor (σ) in the cytosol in response to an extracellular signal. Activation requires the regulated and sequential proteolysis of the σ-associated anti-σ factor, and the function of the Prc and RseP proteases. In this work, we have identified another protease that modulates CSS activity, namely the periplasmic carboxyl-terminal processing protease CtpA.
View Article and Find Full Text PDFCell-surface signaling (CSS) is a signal transfer system that allows Gram-negative bacteria to detect environmental signals and generate a cytosolic response. These systems are composed of an outer membrane receptor that senses the inducing signal, an extracytoplasmic function sigma factor (σ) that targets the cytosolic response by modifying gene expression and a cytoplasmic membrane anti-sigma factor that keeps the σ in an inactive state in the absence of the signal and transduces its presence from the outer membrane to the cytosol. Although CSS systems regulate bacterial processes as crucial as stress response, iron scavenging and virulence, the exact mechanisms that drive CSS are still not completely understood.
View Article and Find Full Text PDFGene regulation in bacteria is primarily controlled at the level of transcription initiation by modifying the affinity of the RNA polymerase (RNAP) for the promoter. This control often occurs through the substitution of the RNAP sigma (σ) subunit. Next to the primary σ factor, most bacteria contain a variable number of alternative σ factors of which the extracytoplasmic function group (σ(ECF)) is predominant.
View Article and Find Full Text PDFThe Fox system of Pseudomonas aeruginosa is a cell-surface signaling (CSS) pathway employed by the bacterium to sense and respond to the presence of the heterologous siderophore ferrioxamine in the environment. This regulatory pathway controls the transcription of the foxA ferrioxamine receptor gene through the extracytoplasmic function sigma factor σ(FoxI). In the absence of ferrioxamine, the activity of σ(FoxI) is inhibited by the transmembrane anti-sigma factor FoxR.
View Article and Find Full Text PDFCell-surface signalling (CSS) enables Gram-negative bacteria to transduce an environmental signal into a cytosolic response. This regulatory cascade involves an outer membrane receptor that transmits the signal to an anti-sigma factor in the cytoplasmic membrane, allowing the activation of an extracytoplasmic function (ECF) sigma factor. Recent studies have demonstrated that RseP-mediated proteolysis of the anti-sigma factors is key to σ(ECF) activation.
View Article and Find Full Text PDFExtracytoplasmic function (ECF) sigma factors play a key role in the regulation of vital functions in the bacterial response to the environment. In Gram-negative bacteria, activity of these sigma factors is often controlled by cell-surface signalling (CSS), a regulatory system that also involves an outer membrane receptor and a transmembrane anti-sigma factor. To get more insight into the molecular mechanism behind CSS regulation, we have focused on the unique Iut system of Pseudomonas putida.
View Article and Find Full Text PDFThe cell-surface signalling (CSS) system represents an important regulatory mechanism by which Gram-negative bacteria respond to the environment. Gene regulation by CSS systems is particularly present and important in the opportunistic human pathogen Pseudomonas aeruginosa. In this bacterium, these mechanisms regulate mainly the uptake of iron, but also virulence functions.
View Article and Find Full Text PDF