Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers worldwide. Treatment of PDAC remains a major challenge. This study aims to evaluate, in vitro, the use of human umbilical cord mesenchymal stromal cell (UC-MSC)-derived EVs to specifically target pancreatic cancer cells.
View Article and Find Full Text PDFUnmutated (UM) immunoglobulin heavy chain variable region (IgHV) status or IgHV3-21 gene usage is associated with poor prognosis in chronic lymphocytic leukemia (CLL) patients. Interestingly, IgHV3-21 is often co-expressed with light chain IgLV3-21, which is potentially able to trigger cell-autonomous BCR-mediated signaling. However, this light chain has never been characterized independently of the heavy chain IgHV3-21.
View Article and Find Full Text PDFInteractions between chronic lymphocytic leukemia (CLL) B cells and the bone marrow (BM) microenvironment play a major function in the physiopathology of CLL. Extracellular vesicles (EVs), which are composed of exosomes and microparticles, play an important role in cell communication. However, little is known about their role in CLL / microenvironment interactions.
View Article and Find Full Text PDFBackground Aims: Because of their self-renewal capacity, multilineage potential and immunomodulatory properties, MSCs are an attractive tool for cell-based immunotherapy strategies. Foreskin, considered as a biological waste material, has been shown to be a reservoir of therapeutic cells.
Methods: MSCs were isolated from different foreskin samples, maintained under in vitro culture and defined according to the International Society for Cellular Therapy (ISCT) criteria.
Facioscapulohumeral muscular dystrophy (FSHD) is associated with an activation of the double homeobox 4 (DUX4) gene, which we previously identified within the D4Z4 repeated elements in the 4q35 subtelomeric region. The pathological DUX4 mRNA is derived from the most distal D4Z4 unit and extends unexpectedly within the flanking pLAM region, which provides an intron and polyadenylation signal. The conditions that are required to develop FSHD are a permissive allele providing the polyadenylation signal and hypomethylation of the D4Z4 repeat array compared with the healthy muscle.
View Article and Find Full Text PDFPreparations of mesenchymal stromal cells (MSCs) are generally obtained from unfractionated tissue cells, resulting in heterogeneous cell mixtures. Several markers were proposed to enrich these cells, but the majority of these markers are defined for bone marrow (BM). Moreover, the surface markers of freshly isolated MSCs also differ from those of cultured MSCs in addition to a phenotypic variation depending on the MSC source.
View Article and Find Full Text PDFBackground: Microparticles (MPs), also called microvesicles (MVs) are plasma membrane-derived fragments with sizes ranging from 0.1 to 1μm. Characterization of these MPs is often performed by flow cytometry but there is no consensus on the appropriate negative control to use that can lead to false positive results.
View Article and Find Full Text PDFCancer Immunol Immunother
February 2015
In multiple myeloma (MM), bone marrow mesenchymal stromal cells (BM-MSCs) play an important role in pathogenesis and disease progression by supporting myeloma cell growth and immune escape. Previous studies have suggested that direct and indirect interactions between malignant cells and BM-MSCs result in constitutive abnormal immunomodulatory capacities in MM BM-MSCs. The aim of this study was to investigate the mechanisms that underlie these MM BM-MSCs abnormalities.
View Article and Find Full Text PDFStem cell therapy is a potential method for the treatment of numerous diseases. The most frequent cellular source is bone-marrow-derived mesenchymal stromal cells (BM-MSCs). Human adipose-derived stromal cells (ADSCs) share similar properties with BM-MSCs as they support hematopoiesis, modulate ongoing immune responses, and differentiate into cells of mesodermal origin.
View Article and Find Full Text PDFAutologous mesenchymal stromal cell (MSC)-based therapies offer one of the most promising and safe methods for regeneration or reconstruction of tissues and organs. Routine procedures to obtain adequate amount of autologous stem cells need their expansion through culture, with risks of contamination and cell differentiation, leading to the loss of cell ability for therapies. We suggest the use of human bone marrow (BM) as a physiological bioreactor to produce autologous MSC by injection of autologous platelet-rich plasma activated by recombinant human soluble tissue factor (rhsTF) in iliac crest.
View Article and Find Full Text PDFBackground: In multiple myeloma, bone marrow mesenchymal stromal cells support myeloma cell growth. Previous studies have suggested that direct and indirect interactions between malignant cells and bone marrow mesenchymal stromal cells result in constitutive abnormalities in the bone marrow mesenchymal stromal cells.
Design And Methods: The aims of this study were to investigate the constitutive abnormalities in myeloma bone marrow mesenchymal stromal cells and to evaluate the impact of new treatments.
Mesenchymal stromal cells (MSCs) can be isolated not only from bone marrow (BM) but also from other tissues, including adipose tissue (AT) and umbilical cord Wharton's Jelly (WJ). Thanks to their ability to differentiate into various cell types, MSC are considered attractive candidates for cell-based regenerative therapy. In degenerative clinical settings, inflammation or infection is often involved.
View Article and Find Full Text PDFBackground: Interactions with the microenvironment, such as bone marrow mesenchymal stromal cells and nurse-like cells, protect chronic lymphocytic leukemia cells from spontaneous and drug-induced apoptosis. This protection is partially mediated by the chemokine SDF-1α (CXCL12) and its receptor CXCR4 (CD184) present on the chronic lymphocytic leukemia cell surface.
Design And Methods: Here, we investigated the ability of AMD3100, a CXCR4 antagonist, to sensitize chronic lymphocytic leukemia cells to chemotherapy in a chronic lymphocytic leukemia/mesenchymal stromal cell based or nurse-like cell based microenvironment co-culture model.
The co-infusion of mesenchymal stromal cells (MSCs) with hematopoietic stem cells could improve the hematopoietic engraftment after cord blood transplant. Adult bone marrow is the major source of MSCs for cell therapy. However, bone marrow aspiration involves an invasive procedure and, in the case of a cord blood transplant, requires the use of a third party.
View Article and Find Full Text PDFBackground: Several markers have been proposed to predict the outcome of chronic lymphocytic leukemia (CLL) patients. However, discordances exist between the current prognostic factors, indicating that none of these factors are totally perfect.
Methodology/principal Findings: Here, we compared the prognostic power of new RNA-based markers in order to construct a quantitative PCR (qPCR) score composed of the most powerful factors.