Background: Although angiotensin II type 1 receptor blockers have emerged as effective antihypertensive agents, it is not known how efficacious these agents are in treating hypertension-associated target organ damage.
Methods And Results: The present study was undertaken to compare the effect of angiotensin type 1 receptor inhibition on the progression of the organ damage observed in 2 models of hypertension, namely, salt-sensitive and nitric oxide synthase inhibition-mediated hypertension. Effective (16.
Objective: Glucose-6-phosphate dehydrogenase (G6PD) is a key enzyme in the pentose phosphate pathway that is a major source of cellular NADPH. The purpose of this study was to examine whether G6PD deficiency affects vascular oxidants and atherosclerosis in high-fat fed apolipoprotein (apo) E(-/-) mice.
Methods And Results: G6PD-mutant mice whose G6PD activity was 20% of normal were crossbred with apoE(-/-) mice.
Arachidonic acid metabolites, some of which may activate thromboxane A(2) receptors (TPr) and contribute to the development of diabetes complications, including nephropathy, are elevated in diabetes. This study determined the effect of blocking TPr with S18886 or inhibiting cyclooxygenase with aspirin on oxidative stress and the early stages of nephropathy in streptozotocin-induced diabetic apolipoprotein E(-/-) mice. Diabetic mice were treated with S18886 (5 mg .
View Article and Find Full Text PDFBackground: Glucose-6-phosphate dehydrogenase (G6PD) regulates production of the reduced form of NADPH through the pentose phosphate pathway. G6PD may therefore affect superoxide anion production via vascular NADPH oxidase, which is key in mediating the vascular response to angiotensin II (Ang II). We determined the hypertensive and vascular hypertrophic response to Ang II in G6PD-deficient mice.
View Article and Find Full Text PDF