Publications by authors named "Karla Thrall"

In a mass radiation exposure, the healthcare system may rely on differential expression of miRNA to determine exposure and effectively allocate resources. To this end, miRNome analysis was performed on non-human primate serum after whole thorax photon beam irradiation of 9.8 or 10.

View Article and Find Full Text PDF

Medical countermeasure development under the US Food and Drug Administration animal rule requires validated animal models of acute radiation effects. The key large animal model is the non-human primate, rhesus macaque. To date, only the rhesus macaque has been used for both critical supportive data and pivotal efficacy trials seeking US Food and Drug Administration approval.

View Article and Find Full Text PDF

The acute radiation syndrome is defined in large part by radiation injury in the hematopoietic and gastrointestinal (GI) systems. To identify new pathways involved in radiation-induced GI injury, this study assessed dose- and time-dependent changes in plasma metabolites in a nonhuman primate model of whole abdominal irradiation. Male and female adult Rhesus monkeys were exposed to 6 MV photons to the abdomen at doses ranging between 8 and 14 Gy.

View Article and Find Full Text PDF

In the event of a radiological attack or accident, it is more likely that the absorbed radiation dose will be heterogeneous, rather than uniformly distributed throughout the body. This type of uneven dose distribution is known as partial-body irradiation (PBI). Partial exposure of the vital organs, specifically the highly radiosensitive intestines, may cause death, if the injury is significant and the post-exposure recovery is considerably compromised.

View Article and Find Full Text PDF

Thoracic exposure to ionizing radiation can lead to delayed injuries to the heart and lung that are serious and even life-threatening. These injuries are difficult to predict since they manifest over many weeks and months. To identify noninvasive, tissue-specific biomarkers for the early detection of late radiation injury, circulating microRNA (miRNA) levels were measured in non-human primates (NHP, Macaca mulatta) that received a single exposure of whole-thorax lung irradiation (WTLI) at a dose likely to result in 20% or 75% mortality within 180 days (9.

View Article and Find Full Text PDF

Introduction: Subcutaneous (SC) formulations of therapeutics with recombinant human hyaluronidase PH20 (rHuPH20) are currently approved across various disease indications. The rHuPH20-mediated enzymatic degradation of SC hyaluronan (HA) facilitates bulk fluid flow and dispersion of co-administered therapeutics. However, current methods of quantifying dispersion in the SC space are limited.

View Article and Find Full Text PDF

Purpose: Total body irradiation of the Gottingen minipig results in a characteristic hematopoietic response, including anemia, neutropenia, lymphocytopenia, and thrombocytopenia. Currently, there are no well-characterized large or small animal models for radiation-induced thrombocytopenia. The study described here using the Gottingen minipig was focused on understanding which aspects of the coagulation cascade leads to radiation-induced coagulopathy.

View Article and Find Full Text PDF

Purpose: Well-characterized animal models that mimic the human response to potentially lethal doses of radiation are necessary in order to assess the efficacy of candidate medical countermeasures under the criteria of the U.S. Food and Drug Administration 'Animal Rule'.

View Article and Find Full Text PDF

Radiation-induced lung injury is a characteristic, dose- and time-dependent sequela of potentially lethal, delayed effects of acute radiation exposure. Understanding of these delayed effects to include development of medical countermeasures requires well-characterized and validated animal models that mimic the human response to acute radiation and adhere to the criteria of the US Food and Drug Administration Animal Rule. The objective herein was to establish a nonhuman primate model of whole-thorax lung irradiation in female rhesus macaques.

View Article and Find Full Text PDF

The Medical Countermeasures against Radiological Threats (MCART) consortium has established a dose response relationship for the hematopoietic acute radiation syndrome (HARS) in the rhesus macaque conducted under an individualized supportive care protocol, including blood transfusions. Application of this animal model as a platform for demonstrating efficacy of candidate medical countermeasures is significantly strengthened when the model is independently validated at multiple institutions. The study reported here describes implementation of standard operating procedures at an institute outside the consortium in order to evaluate the ability to establish an equivalent radiation dose response relationship in a selected species.

View Article and Find Full Text PDF

There is widespread interest in the development of tools to estimate radiation exposures. Exhaled breath provides a novel matrix for assessing biomarkers that could be correlated with exposures. The use of exhaled breath for estimating radiation exposure is warranted, as studies have shown that external exposure to ionizing radiation causes oxidative stress that accelerates lipid peroxidation of polyunsaturated fatty acids, liberating alkanes and alkane metabolites that are excreted in the breath as volatile organic compounds (VOCs).

View Article and Find Full Text PDF

There is a great deal of interest in the establishment of a standardized animal model for the acute radiation syndrome to allow development of diagnostic approaches and countermeasure treatments following radiological terrorist events. Due to physiological, anatomical, and biochemical similarities to humans, the minipig is an attractive large animal model for evaluating countermeasure efficacy. This study was conducted in order to aid in the establishment of the minipig, and the Göttingen minipig in particular, as an animal model for the hematopoietic acute radiation syndrome.

View Article and Find Full Text PDF

Cuprimine® and Syprine® are therapeutics approved by the USFDA to treat copper overload in Wilson Disease (a genetic defect in copper transport) by chelation and accelerated excretion of internally-deposited copper. These oral therapeutics are based on the respective active ingredients D-penicillamine (DPA) and N,N'-bis (2-aminoethyl) -1,2-ethanediamine dihydrochloride (Trien). Cuprimine is considered the primary treatment, although physicians are increasingly turning to Syprine as a first-line therapy.

View Article and Find Full Text PDF

Although four stable isotopes of strontium occur naturally, Sr is produced by nuclear fission and is present in surface soil around the world as a result of fallout from atmospheric nuclear weapons tests. It can easily transfer to humans in the event of a nuclear/radiological emergency or through the plant-animal-human food chain causing long-term exposures. Strontium is chemically and biologically similar to calcium, and is incorporated primarily into bone following internal deposition.

View Article and Find Full Text PDF

The acknowledged risk of deliberate release of radionuclides into local environments by terrorist activities has prompted a drive to improve novel materials and methods for removing internally deposited radionuclides. These decorporation treatments will also benefit workers in the nuclear industry, should an exposure occur. Cuprimine and Syprine are oral therapeutics based on the active ingredients D-penicillamine and N,N'-bis-(2-aminoethyl)-1,2-ethanediamine dihydrochloride, respectively.

View Article and Find Full Text PDF

This report provides a comparison of the oral decorporation efficacy of L-glutathione (GSH), L-cysteine (Cys), and a liposomal GSH formulation (ReadiSorb) toward systemic (60)Co to that observed following intravenous administration of GSH and Cys in F344 rats. Aminoacid L-histidine (His) containing no thiol functionality was tested intravenously to compare in vivo efficacy of the aminothiol (GSH, Cys) chelators with that of the aminoimidazole (His) chelator. In these studies, (60)Co was administered to animals by intravenous injection, followed by intravenous or oral gavage doses of a chelator repeated at 24-h intervals for a total of 5 doses.

View Article and Find Full Text PDF

With the increased threat of terrorist release of radioactive materials, there is a need for non-toxic decorporation agents to treat internal contamination with radionuclides. In this study, low molecular weight chitosan was evaluated for decorporation of radioactive cobalt (60Co). The affinity of chitosan for Co(II) was tested in vitro using spectrophotometric and potentiometric titration techniques.

View Article and Find Full Text PDF

Methyl iodide (MeI) has been proposed as an alternative to methyl bromide as a pre-plant soil fumigant that does not deplete stratospheric ozone. In inhalation toxicity studies performed in animals as part of the registration process, three effects have been identified that warrant consideration in developing toxicity reference values for human risk assessment: nasal lesions (rat), acute neurotoxicity (rat), and fetal loss (rabbit). Uncertainties in the risk assessment can be reduced by using an internal measure of target tissue dose that is linked to the likely mode of action (MOA) for the toxicity of MeI, rather than the external exposure concentration.

View Article and Find Full Text PDF

Nasal dosimetry models that combine computational fluid dynamics and physiologically based pharmacokinetic modeling incorporate information on species-specific anatomical differences, including nasal airflow, mucosal diffusion, clearance-extraction, and metabolism specific to different epithelial layers. As such, these hybrid models have the potential to improve interspecies dosimetric comparisons, and may ultimately reduce uncertainty associated with calculation of reference concentrations. Validation of these models, however, will require unique experimental data.

View Article and Find Full Text PDF

Methyl iodide (MeI) is an intermediate in the manufacture of some pesticides and pharmaceuticals, and is under review for US registration as a non-ozone depleting alternative for methyl bromide for pre-plant soil fumigation. MeI is primarily metabolized via conjugation with glutathione (GSH), with further metabolism to S-methyl cysteine and methanethiol. To facilitate extrapolations of animal pharmacokinetic data to humans, rate constants for the GSH metabolism of MeI were determined in cytosols prepared from the liver and kidneys of rats, human donors, female rabbits, and rabbit fetuses, from rabbit olfactory and respiratory epithelium, and from rabbit and rat blood using a headspace vial equilibration technique and two-compartment mathematical model.

View Article and Find Full Text PDF

Methyl iodide (MeI) is a water soluble monohalomethane that is metabolized in vivo to release iodide (I-). A physiologically based pharmacokinetic (PBPK) model exists for iodide in adult rats, pregnant rats and fetuses, and lactating rats and neonates, but not for pregnant rabbits and fetuses, which have been used extensively for toxicity testing with MeI. Thus, this study was conducted to determine the blood and tissue distribution kinetics of radioiodide in pregnant rabbits and fetuses.

View Article and Find Full Text PDF

A physiologically based pharmacokinetic model was developed to describe the silicone constituent octamethylcyclotetrasiloxane (D4) and its migration from intact or ruptured silicone gel-filled breast implants into surrounding tissues. D4 is a representative low-molecular weight constituent of silicone gel that is soluble enough in biological fluids to migrate from the implant and into surrounding tissues. The simulations were based on a representative young adult (premenopausal) woman and a mature (postmenopausal) woman using worst-case exposure conditions (i.

View Article and Find Full Text PDF

1,4-Dioxane (CAS No. 123-91-1) is used primarily as a solvent or as a solvent stabilizer. It can cause lung, liver, and kidney damage at sufficiently high exposure levels.

View Article and Find Full Text PDF