Although ovarian cancer has a low incidence rate, it remains the most deadly gynecologic malignancy. Previous work has demonstrated that the DNMTi 5-Azacytidine (5AZA-C) activates type I interferon signaling to increase IFNγ T cells and natural killer (NK) cells and reduce the percentage of macrophages in the tumor microenvironment. To improve the efficacy of epigenetic therapy, we hypothesized that the addition of α-difluoromethylornithine (DFMO), an ornithine decarboxylase inhibitor, may further decrease immunosuppressive cell populations improving outcome.
View Article and Find Full Text PDFOvarian cancer is the most lethal of all gynecological cancers, and there is an urgent unmet need to develop new therapies. Epithelial ovarian cancer (EOC) is characterized by an immune suppressive microenvironment, and response of ovarian cancers to immune therapies has thus far been disappointing. We now find, in a mouse model of EOC, that clinically relevant doses of DNA methyltransferase and histone deacetylase inhibitors (DNMTi and HDACi, respectively) reduce the immune suppressive microenvironment through type I IFN signaling and improve response to immune checkpoint therapy.
View Article and Find Full Text PDFEfficacious antitumor immune responses must overcome multiple suppressive mechanisms in the tumor microenvironment to control cancer progression. In this study, we demonstrate that dual targeting of suppressive myeloid populations by inhibiting CSF-1/CSF-1R signaling and activation of antigen-presenting cells with agonist anti-CD40 treatment confers superior antitumor efficacy and increased survival compared with monotherapy treatment in preclinical tumor models. Concurrent CSF-1R blockade and CD40 agonism lead to profound changes in the composition of immune infiltrates, causing an overall decrease in immunosuppressive cells and a shift toward a more inflammatory milieu.
View Article and Find Full Text PDFCD4(+) memory T cells are generated in response to infection or vaccination, provide protection to the host against reinfection, and persist through a combination of enhanced survival and slow homeostatic turnover. We used timed deletion of the TCR-signaling adaptor molecule Src homology 2 domain-containing phosphoprotein of 76 kDa (SLP-76) with MHC:peptide tetramers to study the requirements for tonic TCR signals in the maintenance of polyclonal Ag-specific CD4(+) memory T cells. SLP-76-deficient I-A(b):gp61 cells are unable to rapidly generate effector cytokines or proliferate in response to secondary infection.
View Article and Find Full Text PDFTranscription factors regulate T cell fates at every stage of development and differentiation. Members of the Foxp family of forkhead transcription factors are essential for normal T lineage development; Foxp3 is required for T regulatory cell generation and function, and Foxp1 is necessary for generation and maintenance of naïve T cells. Foxp4, an additional member of the Foxp family, is highly homologous to Foxp1 and has been shown to dimerize with other Foxp proteins.
View Article and Find Full Text PDFThe requirements for tonic T-cell receptor (TCR) signaling in CD8(+) memory T-cell generation and homeostasis are poorly defined. The SRC homology 2 (SH2)-domain-containing leukocyte protein of 76 kDa (SLP-76) is critical for proximal TCR-generated signaling. We used temporally mediated deletion of SLP-76 to interrupt tonic and activating TCR signals after clearance of the lymphocytic choriomeningitis virus (LCMV).
View Article and Find Full Text PDFDendritic cells (DC) are important regulators of T cell immunity. The degree of stimulation, the pattern of costimulatory molecules expressed, and the cytokines secreted by DC dictate the nature of the effector and memory cells generated, particularly with respect to their Th1 or Th2 phenotypes. In this study, we demonstrate that the addition of activated DC to spleen cultures containing established Th2-polarized CD4(+) T cells was sufficient to suppress Th2 and induce Th1 cytokines in a recall response, a phenomenon referred to as phenotype reversal.
View Article and Find Full Text PDF