Dark fermentation of agro-industrial effluents is a promising way for waste valorization. However, understanding the complex microbial dynamics and metabolic interactions within the microbial communities remains challenging. This study investigates the microbial communities involved in continuous hydrogen production from cheese whey and fermented cheese whey using functional profiling with PICRUSt2.
View Article and Find Full Text PDFThe aim of this work was to evaluate the effect of different inorganic compounds as electron donors for the capture of CO from a model cement flue gas CO /O /N (4.2:13.5:82.
View Article and Find Full Text PDFBacteria and yeast are being intensively used to produce biofuels and high-added-value products by using plant biomass derivatives as substrates. The number of microorganisms available for industrial processes is increasing thanks to biotechnological improvements to enhance their productivity and yield through microbial metabolic engineering and laboratory evolution. This is allowing the traditional industrial processes for biofuel production, which included multiple steps, to be improved through the consolidation of single-step processes, reducing the time of the global process, and increasing the yield and operational conditions in terms of the desired products.
View Article and Find Full Text PDFThe problem of phosphorus and nitrogen deficiency in agricultural soils has been solved by adding chemical fertilizers. However, their excessive use and their accumulation have only contributed to environmental contamination. Given the high content of nutrients in biosolids collected from a food industry waste treatment plant, their use as fertilizers was investigated in plants grown in sandy loam soil collected from a semi-desert area.
View Article and Find Full Text PDFThe main goal of this study was to assess the methane production in a biotrickling filter (BTF) using a synthetic gas mixture (H/CO: 60/40), evaluating the effect of the empty bed gas residence time (EBRT), pH, and temperature. The BTF was inoculated with acclimated granular anaerobic sludge. Three EBRT were tested: 11.
View Article and Find Full Text PDFWater Sci Technol
August 2021
This study compares the H production from glucose, xylose, and acidic hydrolysates of Agave tequilana bagasse as substrates. The fermentation was performed in a granular sludge reactor operated in two phases: (1) model substrates (glucose and xylose) and (2) acidic hydrolysates at 35 °C, pH 4.5 and a hydraulic retention time of 5.
View Article and Find Full Text PDFBraz J Microbiol
June 2020
This study proposes the treatment and valorization of denim textile effluents through a fermentative hydrogen production process. Also, the study presents the decolorizing capabilities of bacterial and fungal isolates obtained from the fermented textile effluents. The maximum hydrogen production rate was 0.
View Article and Find Full Text PDFEfficient hydrolysis of holocellulose depends on a proper balance between cellulase (endoglucanase, exoglucanase, β-glucosidase) and xylanase activities. The present study aimed to induce the production of cellulases and xylanases using liquid cultures (one, two, three, and four fungal strains on the same bioreactor) of wild strains of Trichoderma harzianum, Aspergillus niger, and Fusarium oxysporum. The strains were identified by amplification and analysis of the ITS rDNA region and the obtained sequences were deposited in Genbank.
View Article and Find Full Text PDFBiohydrogen is a sustainable form of energy as it can be produced from organic waste through fermentation processes involving dark fermentation and photofermentation. Very often biohydrogen is included as a part of biorefinery approaches, which reclaim organic wastes that are abundant sources of renewable and low cost substrate that can be efficiently fermented by microorganisms. The aim of this work was to critically assess selected bioenergy alternatives from organic solid waste, such as biohydrogen and bioelectricity, to evaluate their relative advantages and disadvantages in the context of biorefineries, and finally to indicate the trends for future research and development.
View Article and Find Full Text PDFHydrogen is a valuable clean energy source, and its production by biological processes is attractive and environmentally sound and friendly. In México 5 million tons/yr of agroindustrial wastes are generated; these residues are rich in fermentable organic matter that can be used for hydrogen production. On the other hand, batch, intermittently vented, solid substrate fermentation of organic waste has attracted interest in the last 10 years.
View Article and Find Full Text PDFJ Environ Manage
March 2012
In the first batch solid substrate anaerobic hydrogenogenic fermentation with intermittent venting (SSAHF-IV) of the organic fraction of municipal solid waste (OFMSW), a cumulative production of 16.6 mmol H(2)/reactor was obtained. Releases of hydrogen partial pressure first by intermittent venting and afterward by flushing headspace of reactors with inert gas N(2) allowed for further hydrogen production in a second to fourth incubation cycle, with no new inoculum nor substrate nor inhibitor added.
View Article and Find Full Text PDFTwo types of induction treatments (heat-shock pretreatment, HSP, and acetylene, Ac), inocula (meso and thermophilic) and incubation temperatures (37 and 55 degrees C) were tested according to a full factorial design 2(3) with the aim of assessing their effects on cumulative H(2) production (P(H), mmol H(2)/mini-reactor), initial H(2) production rate (R(i,H), micromol H(2)/(g VS(i) x h)), lag time (T(lag), h), and metabolites distribution when fermenting organic solid waste with an undefined anerobic consortia in batch mini-reactors. Type of inocula did not have a significant effect on P(H), T(lag), and R(i,H) except for organic acids production: mini-reactors seeded with thermophilic inocula had the highest organic acid production. Concerning the induction treatment, it was found that on the average Ac only affected in a positive way the P(H) and T(lag).
View Article and Find Full Text PDFHeadspace of batch minireactors was intermittently vented and gas flushed with N2 in order to enhance H2 production (PH) by anaerobic consortia degrading organic solid wastes. Type of inocula (meso and thermophilic), induction treatment (heat-shock pretreatment, HSP, and acetylene, Ac), and incubation temperature (37 and 55 degrees C) were studied by means of a factorial design. On average, it was found that mesophilic incubation had the most significant positive effect on PH followed by treatment with Ac, although the units with the best performance (high values of PH, initial hydrogen production rate, and short lag time) were those HSP-induced units incubated at 37 degrees C (type of inocula was not significant).
View Article and Find Full Text PDF