Publications by authors named "Karla Kospic"

Adenine nucleotides (ANs)-adenosine 5'-triphosphate (ATP), adenosine 5'-diphosphate (ADP), and adenosine 5'-monophosphate (AMP)-are essential for energy transfer and the supply of countless processes within cellular metabolism. Their concentrations can be expressed as adenylate energy charge (AEC), a measure of cellular metabolic energy that directly correlates with the homeostasis of the organism. AEC index has broad diagnostic potential, as reduced ATP levels are associated to various conditions, such as inflammatory diseases, metabolic disorders, and cancer.

View Article and Find Full Text PDF

Ultrasound (US) and high voltage electric discharge (HVED) with water as a green solvent represent promising novel non-thermal techniques for protein extraction from sugar beet (Beta vulgaris subsp. vulgaris var. altissima) leaves.

View Article and Find Full Text PDF

The harmful effects of silver nanoparticles (AgNPs) have been confirmed in many organisms, but the mechanism of their toxicity is not yet fully understood. In biological systems, AgNPs tend to aggregate and dissolve, so they are often stabilized by coatings that influence their physico-chemical properties. In this study, the effects of AgNPs with different coatings [polyvinylpyrrolidone (PVP) and cetyltrimethylammonium bromide (CTAB)] on oxidative stress appearance and proteome changes in tobacco () seedlings have been examined.

View Article and Find Full Text PDF

The antimicrobial properties of silver and enhanced reactivity when applied in a nanoparticle form (AgNPs) led to their growing utilization in industry and various consumer products, which raises concerns about their environmental impact. Since AgNPs are prone to transformation, surface coatings are added to enhance their stability. AgNP phytotoxicity has been mainly attributed to the excess generation of reactive oxygen species (ROS), leading to the induction of oxidative stress.

View Article and Find Full Text PDF

Silver nanoparticles (AgNPs) have been implemented in a wide range of commercial products, resulting in their unregulated release into aquatic as well as terrestrial systems. This raises concerns over their impending environmental effects. Once released into the environment, they are prone to various transformation processes that modify their reactivity.

View Article and Find Full Text PDF

Silver nanoparticles (AgNPs) are the most exploited nanomaterial in agriculture and food production, and their release into the environment raises concern about their impact on plants. Since AgNPs are prone to biotransformation, various surface coatings are used to enhance their stability, which may modulate AgNP-imposed toxic effects. In this study, the impact of AgNPs stabilized with different coatings (citrate, polyvinylpyrrolidone (PVP), and cetyltrimethylammonium bromide (CTAB)) and AgNO on photosynthesis of tobacco plants as well as AgNP stability in exposure medium have been investigated.

View Article and Find Full Text PDF