Spatial and temporal variability in benthic flux denitrification efficiency occurs across Port Phillip Bay, Australia. Here, we assess the capacity for untargeted metatranscriptomics to resolve spatiotemporal differences in the microbial contribution to benthic nitrogen cycling. The most abundant sediment transcripts assembled were associated with the archaeal nitrifier Nitrosopumilus.
View Article and Find Full Text PDFHere we describe the potential for sediment microbial nitrogen-cycling gene (DNA) and activity (RNA) abundances to spatially resolve coastal areas impacted by seasonal variability in external nutrient inputs. Three sites were chosen within a nitrogen-limited embayment, Port Phillip Bay (PPB), Australia that reflect variability in both proximity to external nutrient inputs and the dominant form of available nitrogen. At three sediment depths (0-1; 1-5; 5-10 cm) across a 2 year study key genes involved in nitrification (archaeal amoA and bacterial β-amoA), nitrite reduction (clade I nirS and cluster I nirK, archaeal nirK-a), anaerobic oxidation of ammonium (anammox 16S rRNA phylogenetic marker) and nitrogen fixation (nifH) were quantified.
View Article and Find Full Text PDFMicrobial eukaryotes have important roles in marine food webs, but their diversity and activities in hydrothermal vent ecosystems are poorly characterized. In this study, we analyzed microbial eukaryotic communities associated with bacterial (Beggiatoa) mats in the 2,000 m deep-sea Guaymas Basin hydrothermal vent system using 18S rRNA gene high-throughput sequencing of the V4 region. We detected 6,954 distinct Operational Taxonomic Units (OTUs) across various mat systems.
View Article and Find Full Text PDFA metatranscriptome study targeting the protistan community was conducted off the coast of Southern California, at the San Pedro Ocean Time-series station at the surface, 150 m (oxycline), and 890 m to link putative metabolic patterns to distinct protistan lineages. Comparison of relative transcript abundances revealed depth-related shifts in the nutritional modes of key taxonomic groups. Eukaryotic gene expression in the sunlit surface environment was dominated by phototrophs, such as diatoms and chlorophytes, and high abundances of transcripts associated with synthesis pathways (e.
View Article and Find Full Text PDFOchromonas spp. strains CCMP1393 and BG-1 are phagotrophic phytoflagellates with different nutritional strategies. Strain CCMP1393 is an obligate phototroph while strain BG-1 readily grows in continuous darkness in the presence of bacterial prey.
View Article and Find Full Text PDFCollectively, phagotrophic algae (mixotrophs) form a functional continuum of nutritional modes between autotrophy and heterotrophy, but the specific physiological benefits of mixotrophic nutrition differ among taxa. Ochromonas spp. are ubiquitous chrysophytes that exhibit high nutritional flexibility, although most species generally fall towards the heterotrophic end of the mixotrophy spectrum.
View Article and Find Full Text PDFBackground: Ochromonas is a genus of mixotrophic chrysophytes that is found ubiquitously in many aquatic environments. Species in this genus can be important consumers of bacteria but vary in their ability to perform photosynthesis. We studied the effect of light and bacteria on growth and gene expression of a predominantly phagotrophic Ochromonas species.
View Article and Find Full Text PDFSingle-cell transcriptomics is an emerging research tool that has huge untapped potential in the study of microbial eukaryotes. Its application has been tested in microbial eukaryotes 50 μm or larger, and it generated transcriptomes similar to those obtained from culture-based RNA-seq. However, microbial eukaryotes have a wide range of sizes and can be as small as 1 μm.
View Article and Find Full Text PDFProtists, which are single-celled eukaryotes, critically influence the ecology and chemistry of marine ecosystems, but genome-based studies of these organisms have lagged behind those of other microorganisms. However, recent transcriptomic studies of cultured species, complemented by meta-omics analyses of natural communities, have increased the amount of genetic information available for poorly represented branches on the tree of eukaryotic life. This information is providing insights into the adaptations and interactions between protists and other microorganisms and macroorganisms, but many of the genes sequenced show no similarity to sequences currently available in public databases.
View Article and Find Full Text PDFOctocorals are sources of novel but understudied microbial diversity. Conversely, scleractinian or reef-building coral microbiomes have been heavily examined in light of the threats of climate change. Muricea californica and Muricea fruticosa are two co-occurring species of gorgonian octocoral abundantly found in the kelp forests of southern California, and thus provide an excellent basis to determine if octocoral microbiomes are host specific.
View Article and Find Full Text PDFMixotrophic protists, i.e. protists that can carry out both phototrophy and heterotrophy, are a group of organisms with a wide range of nutritional strategies.
View Article and Find Full Text PDFPrymnesium parvum is a globally distributed prymnesiophyte alga commonly found in brackish water marine ecosystems and lakes. It possesses a suite of toxins with ichthyotoxic, cytotoxic and hemolytic effects which, along with its mixotrophic nutritional capabilities, allows it to form massive Ecosystem Disruptive Algal Blooms (EDABs). While blooms of high abundance coincide with high levels of nitrogen (N) and phosphorus (P), reports of field and laboratory studies have noted that P.
View Article and Find Full Text PDFThe mixotrophic prymnesiophyte, Prymnesium parvum, is a widely distributed alga with significant ecological importance. It produces toxins and can form ecosystem disruptive blooms that result in fish kills and changes in planktonic food web structure. However, the relationship between P.
View Article and Find Full Text PDFMarine microbial communities experience daily fluctuations in light and temperature that can have important ramifications for carbon and nutrient cycling. Elucidation of such short time scale community-wide dynamics is hindered by system complexity. Hypersaline aquatic environments have lower species richness than marine environments and can be well-defined spatially, hence they provide a model system for diel cycle analysis.
View Article and Find Full Text PDFHypersaline systems near salt saturation levels represent an extreme environment, in which organisms grow and survive near the limits of life. One of the abundant members of the microbial communities in hypersaline systems is the square archaeon, Haloquadratum walsbyi. Utilizing a short-read metagenome from Lake Tyrrell, a hypersaline ecosystem in Victoria, Australia, we performed a comparative genomic analysis of H.
View Article and Find Full Text PDFBackground: The Gulf of Maine is an important biological province of the Northwest Atlantic with high productivity year round. From an environmental Sanger-based metagenome, sampled in summer and winter, we were able to assemble and explore the partial environmental genomes of uncultured members of the class Flavobacteria. Each of the environmental genomes represents organisms that compose less than 1% of the total microbial metagenome.
View Article and Find Full Text PDFGenomic studies of bacteria, archaea and viruses have provided insights into the microbial world by unveiling potential functional capabilities and molecular pathways. However, the rate of discovery has been slower among microbial eukaryotes, whose genomes are larger and more complex. Transcriptomic approaches provide a cost-effective alternative for examining genetic potential and physiological responses of microbial eukaryotes to environmental stimuli.
View Article and Find Full Text PDFMicrobial community succession was examined over a two-year period using spatially and temporally coordinated water chemistry measurements, metagenomic sequencing, phylogenetic binning and de novo metagenomic assembly in the extreme hypersaline habitat of Lake Tyrrell, Victoria, Australia. Relative abundances of Haloquadratum-related sequences were positively correlated with co-varying concentrations of potassium, magnesium and sulfate, but not sodium, chloride or calcium ions, while relative abundances of Halorubrum, Haloarcula, Halonotius, Halobaculum and Salinibacter-related sequences correlated negatively with Haloquadratum and these same ionic factors. Nanohaloarchaea and Halorhabdus-related sequence abundances were inversely correlated with each other, but not other taxonomic groups.
View Article and Find Full Text PDFIt is widely stated that viruses represent the most significant source of biodiversity on Earth, yet characterizing the diversity of viral assemblages in natural systems remains difficult. Viral diversity studies are challenging because viruses lack universally present, phylogenetically informative genes. Here, we developed an approach to estimate viral diversity using a series of functional and novel conserved genes.
View Article and Find Full Text PDFThe study of natural archaeal assemblages requires community context, namely, a concurrent assessment of the dynamics of archaeal, bacterial, and viral populations. Here, we use filter size-resolved metagenomic analyses to report the dynamics of 101 archaeal and bacterial OTUs and 140 viral populations across 17 samples collected over different timescales from 2007-2010 from Australian hypersaline Lake Tyrrell (LT). All samples were dominated by Archaea (75-95%).
View Article and Find Full Text PDFThis study describes the community structure of the microbial eukaryotic community from hypersaline Lake Tyrrell, Australia, using near full length 18S rRNA sequences. Water samples were taken in both summer and winter over a 4-year period. The extent of eukaryotic diversity detected was low, with only 35 unique phylotypes using a 97% sequence similarity threshold.
View Article and Find Full Text PDFEcological succession is one of the most important concepts in ecology. However for microbial community succession, there is a lack of a solid theoretical framework regarding succession in microorganisms. This is in part due to microbial community complexity and plasticity but also because little is known about temporal patterns of microbial community shifts in different kinds of ecosystems, including arid soils.
View Article and Find Full Text PDFMicrobial populations inhabiting a natural hypersaline lake ecosystem in Lake Tyrrell, Victoria, Australia, have been characterized using deep metagenomic sampling, iterative de novo assembly, and multidimensional phylogenetic binning. Composite genomes representing habitat-specific microbial populations were reconstructed for eleven different archaea and one bacterium, comprising between 0.6 and 14.
View Article and Find Full Text PDFAppl Environ Microbiol
September 2012
Viruses of the Bacteria and Archaea play important roles in microbial evolution and ecology, and yet viral dynamics in natural systems remain poorly understood. Here, we created de novo assemblies from 6.4 Gbp of metagenomic sequence from eight community viral concentrate samples, collected from 12 h to 3 years apart from hypersaline Lake Tyrrell (LT), Victoria, Australia.
View Article and Find Full Text PDFEukaryotic marine microbes play pivotal roles in biogeochemical nutrient cycling and ecosystem function, but studies that focus on the protistan biogeography and genetic diversity lag-behind studies of other microbes. 18S rRNA PCR amplification and clone library sequencing are commonly used to assess diversity that is culture independent. However, molecular methods are not without potential biases and artifacts.
View Article and Find Full Text PDF