Publications by authors named "Karl-Rudolf Erlemann"

Neutrophils spontaneously undergo apoptosis, which is associated with increased oxidative stress. We found that there is a dramatic shift in the formation of 5-lipoxygenase products during this process. Freshly isolated neutrophils rapidly convert leukotriene B(4) (LTB(4)) and 5-hydroxy-6,8,11,14-eicosatetraenoic acid (5-HETE) to their biologically inactive omega-oxidation products.

View Article and Find Full Text PDF
Article Synopsis
  • 5-Oxo-6E,8Z,11Z,14Z-eicosatetraenoic acid (5-oxo-ETE) is a metabolite formed from 5-HETE by the enzyme 5-hydroxyeicosanoid dehydrogenase (5-HEDH) and acts as a chemoattractant for immune cells.
  • A study involved synthesizing various 5S-hydroxy fatty acids to test their metabolism by 5-HEDH, revealing that longer fatty acids (at least 16 carbons) with specific functional groups are better substrates, while smaller or modified fatty acids were less metabolized.
  • Some synthesized fatty acids effectively inhibited the formation of 5-oxo-
View Article and Find Full Text PDF

5-Oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE) is a potent eosinophil chemoattractant that is synthesized from the 5-lipoxygenase product 5S-hydroxy-6,8,11,14-eicosatetraenoic acid (5-HETE) by the NADP+-dependent enzyme 5-hydroxyeicosanoid dehydrogenase (5-HEDH), previously reported only in inflammatory cells. Because of their critical location at the interface of the lung with the external environment, we sought to determine whether epithelial cells could also synthesize this substance. We found that HEp-2, T84, A549, and BEAS-2B cells all synthesize 5-oxo-ETE from 5-HETE in amounts comparable to leukocytes.

View Article and Find Full Text PDF

The 5-lipoxygenase product 5-oxo-ETE (5-oxo-eicosatetraenoic acid) is a highly potent granulocyte chemoattractant that is synthesized from 5-HETE (5-hydroxyeicosatetraenoic acid) by 5-HEDH (5-hydroxyeicosanoid dehydrogenase). In the present study, we found that 5-HEDH activity is induced in U937 monocytic cells by differentiation towards macrophages with PMA and in HL-60 myeloblastic cells by 1,25-dihydroxy-vitamin D3. We used PMA-differentiated U937 cells to investigate further the regulation of 5-HEDH.

View Article and Find Full Text PDF

The bovine seminal plasma protein PDC-109 modulates the maturation of bull sperm cells by removing lipids, mainly phosphatidylcholine and cholesterol, from their cellular membrane. Here, we have characterized the process of extraction of endogenous phospholipids and of their respective analogues. By measuring the PDC-109-mediated release of fluorescent phospholipid analogues from lipid vesicles and from biological membranes (human erythrocytes, bovine epididymal sperm cells), we showed that PDC-109 extracts phospholipids with a phosphorylcholine headgroup mainly from the outer leaflet of these membranes.

View Article and Find Full Text PDF

There is increasing evidence that proinflammatory products of the 5-lipoxygenase pathway play an important role in cardiovascular disease. In the present study, we found that human endothelial cells rapidly oxidize the 5-lipoxygenase product 5S-hydroxy-6,8,11,14-eicosatetraenoic acid (5-HETE) to 5-oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE), a potent chemoattractant for myeloid cells. 5-Oxo-ETE synthesis is strongly stimulated by oxidative stress.

View Article and Find Full Text PDF

5-Oxo-ETE (5-oxo-6,8,11,14-eicosatetraenoic acid) is a highly potent granulocyte chemoattractant that acts through a selective G-protein coupled receptor. It is formed by oxidation of the 5-lipoxygenase product 5-HETE (5S-hydroxy-6,8,11,14-eicosatetraenoic acid) by 5-hydroxyeicosanoid dehydrogenase (5-HEDH). Although leukocytes and platelets display high microsomal 5-HEDH activity, unstimulated intact cells do not convert 5-HETE to appreciable amounts of 5-oxo-ETE.

View Article and Find Full Text PDF