Homogeneous layer formation on textured silicon substrates is essential for the fabrication of highly efficient monolithic perovskite silicon tandem solar cells. From all well-known techniques for the fabrication of perovskite solar cells (PSCs), the evaporation method offers the highest degree of freedom for layer-by-layer deposition independent of the substrate's roughness or texturing. Hole-transporting polymers with high hole mobility and structural stability have been used as effective hole-transporting materials (HTMs) of PSCs.
View Article and Find Full Text PDFPerovskite solar cells have become a game changer in the field of photovoltaics by reaching power conversion efficiencies beyond 23%. To achieve even higher efficiencies, it is necessary to increase the understanding of crystallization, grain formation, and layer ripening. In this study, by a systematic variation of methylammonium iodide (MAI) concentrations, we changed the stoichiometry and thereupon the crystal growth conditions in MAPbI perovskite solar cells, prepared by a two-step hybrid evaporation-spin-coating deposition method.
View Article and Find Full Text PDFDual-source vapor-phase deposition enables low-temperature fabrication of high-performance planar structure perovskite (CHNHPbI) solar cells (PSCs), applicable in tandem devices or for industrial production with high homogeneity. Herein, we report low-temperature fabrication of high-efficiency PSCs by dual-source vapor-phase deposition and significance of TiO surface modification with [6,6]-phenyl C butyric acid methyl ester (PCBM) on cell performance. Co-evaporation of PbI and CHNHI, as confirmed by X-ray diffraction and high-resolution transmission electron microscopy analyses, results in CHNHPbI layers with a well-crystallized tetragonal phase formed on both TiO and TiO/PCBM electron-transport layers (ETLs).
View Article and Find Full Text PDF