The objectives of the study group focused on the following main topics related to the performance of 1- and 2-piece ceramic implants: defining bone-implant-contact percentages and its measurement methods, evaluating the pink esthetic score as an esthetic outcome parameter after immediate implantation, recognizing the different results of ceramic implant designs as redefined by the German Association of Oral Implantology, incorporating the patient report outcome measure to include satisfaction and improvement in oral health-related quality of life, and conducting preclinical studies to address existing gaps in ceramic implants. During the Joint Congress for Ceramic Implantology (2022), the study group evaluated 17 clinical trials published between 2015 and 2021. After extensive discussions and multiple closed sessions, consensus statements and recommendations were developed, incorporating all approved modifications.
View Article and Find Full Text PDFZirconia implants have gained popularity for their aesthetic appeal and biocompatibility, making them a preferred choice for anterior teeth replacement. This study explores the interaction between telomere length and inflammatory biomarkers in seven cases of zirconia implant placement to gain insights into postoperative cellular aging, inflammatory responses, and long-term outcomes. Zirconia implants offer advantages over titanium implants, as they do not corrode or release metal ions, leading to potential inflammation and implant failure.
View Article and Find Full Text PDFPurpose: To evaluate the impact of immediate and delayed zirconia implant placement on crestal bone loss and the clinical outcomes achieved with this approach 1 year after prosthetic loading. Further objectives were to evaluate the influence of age, sex, smoking, implant dimensions, platelet-rich fibrin application and location of the implants in the jawbone on the crestal bone level.
Materials And Methods: Clinical and radiographic analysis were performed to evaluate the success rates for both groups.
Background: There is limited evidence for the use of zirconium dioxide implants in immediate implant placement as well as for related immediate loading protocols. The aim of this retrospective study was to investigate the survival rate, success and patient satisfaction of immediately placed zirconia implants compared to delayed placed implants.
Methods: The study included 58 partially edentulous patients who were treated between 2013 and 2015 with immediate and delayed transgingival healing zirconium dioxide implants (SDS, Kreuzlingen/ Switzerland).
Iron responsive elements (IREs) are mRNA stem-loop targets for translational control by the two iron regulatory proteins IRP1 and IRP2. They are found in the untranslated regions (UTRs) of genes that code for proteins involved in iron metabolism. There are ten "classic" IRE types that define the conserved secondary and tertiary structure elements necessary for proper IRP binding, and there are 83 published "IRE-like" sequences, most of which depart from the established IRE model.
View Article and Find Full Text PDFIRP1 [iron regulatory protein (IRP) 1] is a bifunctional protein with mutually exclusive end-states. In one mode of operation, IRP1 binds iron-responsive element (IRE) stem-loops in messenger RNAs encoding proteins of iron metabolism to control their rate of translation. In its other mode, IRP1 serves as cytoplasmic aconitase to correlate iron availability with the energy and oxidative stress status of the cell.
View Article and Find Full Text PDFIron is a cofactor for many proteins that are involved in essential metabolic processes. However, iron must be strictly regulated because it can react with oxygen to generate cytotoxic reactive oxygen intermediates. Iron regulatory protein 1 (IRP1) is a bi-functional protein that can act either as a post-transcriptional regulator of mRNAs containing iron responsive elements, or as a [4Fe-4S] cluster-containing cytosolic aconitase.
View Article and Find Full Text PDFIron responsive elements (IREs) are short stem-loop structures found in several mRNAs encoding proteins involved in cellular iron metabolism. Iron regulatory proteins (IRPs) control iron homeostasis through differential binding to the IREs, accommodating any sequence or structural variations that the IREs may present. Here we report the structure of IRP1 in complex with transferrin receptor 1 B (TfR B) IRE, and compare it to the complex with ferritin H (Ftn H) IRE.
View Article and Find Full Text PDFListeria monocytogenes is a food-borne intracellular bacterial pathogen capable of causing serious human disease. L. monocytogenes survival within mammalian cells depends upon the synthesis of a number of secreted virulence factors whose expression is regulated by the transcriptional activator PrfA.
View Article and Find Full Text PDFSensors (Basel)
August 2008
Alaska's Prince William Sound (PWS) is a unique locale tending to have strong gap winds, especially in the winter season. To characterize and understand these strong surface winds, which have great impacts on the local marine and aviation activities, the surface wind retrieval from the Synthetic Aperture Radar data (SAR-wind) is combined with a numerical mesoscale model. Helped with the SAR-wind observations, the mesoscale model is used to study cases of strong winds and relatively weak winds to depict the nature of these winds, including the area of extent and possible causes of the wind regimes.
View Article and Find Full Text PDFIron homeostasis in animal cells is controlled post-transcriptionally by the iron regulatory proteins IRP1 and IRP2. IRP1 can assume two different functions in the cell, depending on conditions. During iron scarcity or oxidative stress, IRP1 binds to mRNA stem-loop structures called iron responsive elements (IREs) to modulate the translation of iron metabolism genes.
View Article and Find Full Text PDFIron regulatory protein 1 (IRP1) binds iron-responsive elements (IREs) in messenger RNAs (mRNAs), to repress translation or degradation, or binds an iron-sulfur cluster, to become a cytosolic aconitase enzyme. The 2.8 angstrom resolution crystal structure of the IRP1:ferritin H IRE complex shows an open protein conformation compared with that of cytosolic aconitase.
View Article and Find Full Text PDFActa Crystallogr Sect F Struct Biol Cryst Commun
March 2006
Iron regulatory protein 1 (IRP1) is a bifunctional protein with activity as an RNA-binding protein or as a cytoplasmic aconitase. Interconversion of IRP1 between these mutually exclusive states is central to cellular iron regulation and is accomplished through iron-responsive assembly and disassembly of a [4Fe-4S] cluster. When in its apo form, IRP1 binds to iron responsive elements (IREs) found in mRNAs encoding proteins of iron storage and transport and either prevents translation or degradation of the bound mRNA.
View Article and Find Full Text PDFCrmA is a cowpox virus serpin required for full host infectivity and virulence. Residues 51-56 (DKNKDD), the only region that differs significantly from related viral serpins, were investigated for functional importance. A 1.
View Article and Find Full Text PDFPigment epithelial-derived factor (PEDF), an angiogenesis inhibitor with neurotrophic properties, balances angiogenesis in the eye and blocks tumor progression. Its neurotrophic function and the ability to block vascular leakage is replicated by the PEDF 44-mer peptide (residues 58-101). We analyzed PEDFs' three-dimensional structure and identified a potential receptor-binding surface.
View Article and Find Full Text PDFMaspin, a member of the serpin superfamily, has tumor suppressing activity against breast and prostate cancer. Maspin inhibits tumor growth by blocking cell invasion, and its reactive center loop (RCL) is thought to mediate this activity. To understand this function on the molecular level, we have solved the three-dimensional structure of Maspin to 3.
View Article and Find Full Text PDFThe serpin antithrombin is a slow thrombin inhibitor that requires heparin to enhance its reaction rate. In contrast, alpha1-proteinase inhibitor (alpha1PI) Pittsburgh (P1 Met --> Arg natural variant) inhibits thrombin 17 times faster than pentasaccharide heparin-activated antithrombin. We present here x-ray structures of free and S195A trypsin-bound alpha1PI Pittsburgh, which show that the reactive center loop (RCL) possesses a canonical conformation in the free serpin that does not change upon binding to S195A trypsin and that contacts the proteinase only between P2 and P2'.
View Article and Find Full Text PDFPigment epithelium-derived factor is a member of the serpin superfamily of proteins, but one that lacks inhibitory properties against either serine or cysteine proteinases. Nevertheless it possesses a number of physiological properties that make it a potentially important protein in regulation of angiogenesis, in neuronal cell survival and in protection of neurons from neurotoxic agents. It is also a protein that is highly up-regulated in the G0 phase of early-passage cells compared with rapidly proliferating cells or senescent cells, and so is also linked to both the cell cycle and cell senescence.
View Article and Find Full Text PDFIsomerization of aspartate to isoaspartate occurs spontaneously in proteins, causes changes in protein structures, and correlates positively with the aging processes of many organisms, including Alzheimer disease in humans. Aspartate isomerization proceeds through an unstable cyclic succinimide intermediate. There are few protein structure determinations that have characterized the intermediates and products of this isomerization reaction.
View Article and Find Full Text PDFIn this issue of Structure, Blanco et al. describe the first structure of a two-component response regulator effector domain bound to its target DNA, showing novel tandem binding to successive direct repeat sequences of pho boxes from the phoA operon promotor.
View Article and Find Full Text PDF