Background: The ultra-short-acting benzodiazepine remimazolam, approved for procedural sedation and general anesthesia, is inactivated by carboxylesterase 1 (CES1).
Objective: Remimazolam´s involvement in CES1-mediated drug-drug interactions (DDIs) was investigated.
Methods: Possible interactions of remimazolam were studied in co-exposure experiments with eleven different drugs.
Background: The ultra-short-acting benzodiazepine, remimazolam, is a new treatment modality for procedural sedation and general anesthesia. Its activity is terminated by carboxylesterase 1 (CES1).
Objective: The objective of this study was to determine the drug-drug interaction (DDI) potential of remimazolam through mechanisms unrelated to its metabolizing enzyme, CES1.
Background: Remimazolam (RMZ) is a novel ultrashort-acting benzodiazepine used for sedation by intravenous administration. The pharmacophore of RMZ includes a carboxyl ester group sensitive to esterase- mediated hydrolysis, which is the primary path of metabolic elimination. However, for the sake of drug safety, a deeper and broader knowledge of the involved metabolic pathways and the evolving metabolites is required.
View Article and Find Full Text PDFWhile lipase content and appropriate acid protection of pancreatin preparations (PP) are well defined determinants of an effective therapy of exocrine pancreatic insufficiency, the optimal sphere size of PP has remained a matter of discussion. We performed a systematic review to assess the optimal sphere size of enteric coated pancreatin products that may best guarantee coordinated delivery of PP and food to the duodenum. PubMed was searched for studies on gastric emptying of indigestible spheres in the digestive phase, using overlapping search algorithms; identified sources were searched for further leads, extending the investigation to Google Scholar.
View Article and Find Full Text PDFDrug-drug interactions can substantially change pharmacological effects of the individual substances involved. For the use of sedatives or anaesthetics, having knowledge of the extent and characteristics of such interactions is crucial for ensuring the proper protection of patients undergoing any kind of sedation. Remimazolam is a new ultra-short acting benzodiazepine that is currently under development for intravenous use in procedural sedation and general anaesthesia.
View Article and Find Full Text PDFStudy Objective: To evaluate factors affecting variability in response to remimazolam in general anesthesia.
Design: Plasma concentration-time data from 11 Phase 1-3 clinical trials were pooled for the population pharmacokinetic (popPK) analysis and concentration-bispectral index (BIS) data were pooled from 8 trials for popPK-PD analysis. A 3-compartment model with allometric exponents on clearance and volume described remimazolam concentrations over time.
Remimazolam is an ultra-short-acting benzodiazepine being investigated for induction and maintenance of general anesthesia and for procedural sedation. This dose-response analysis of 4 phase 2-3 studies evaluated covariates that may impact the pharmacodynamic profile (based on theoretical pharmacokinetic principles) and require dose adjustments in subpopulations, particularly elderly, and if remimazolam has cumulative properties. Covariates affecting the time to loss of consciousness and time to extubation were evaluated using Cox proportional hazards models.
View Article and Find Full Text PDFBackground: Remimazolam is an ultra-short acting benzodiazepine under development for procedural sedation and general anesthesia. It is hydrolyzed by CES1 to an inactive metabolite (CNS7054).
Purpose: In this study, the effect of continuous remimazolam exposure on its metabolism and on expression was investigated in a dynamic 3-D bioreactor culture model inoculated with primary human hepatocytes.
N-methyl-d-aspartate receptors (NMDARs) are ion channels whose synaptic versus extrasynaptic localization critically influences their functions. This distribution of NMDARs is highly dependent on their lateral diffusion at the cell membrane. Each obligatory subunit of NMDARs (GluN1 and GluN2) contains two extracellular clamshell-like domains with an agonist-binding domain and a distal N-terminal domain (NTD).
View Article and Find Full Text PDFIntestinal radiation toxicity occurs during and after abdominopelvic radiotherapy. Endothelial cells play a significant role in modulating radiation-induced intestinal damage. We demonstrated that the endothelial cell surface receptor thrombomodulin (TM), a protein with anticoagulant, anti-inflammatory and antioxidant properties, mitigates radiation-induced lethality in mice.
View Article and Find Full Text PDFEur J Clin Pharmacol
June 2013
Ischemic and hemorrhagic strokes have different etiologies, but share some pathogenic mechanisms, including a pro-neurotoxic effect of endogenous tissue plasminogen activator (tPA) via N-methyl-d-Aspartate (NMDA) receptors. Thus, in a model of intracerebral hemorrhage in rats, we investigated the therapeutic value of a strategy of immunotherapy (αATD-GluN1 antibody) preventing the interaction of tPA with NMDA receptors. We found that a single intravenous injection of αATD-GluN1 reduced brain edema, neuronal death, microglial activation and functional deficits following intracerebral hemorrhage, without affecting the hematoma volume.
View Article and Find Full Text PDFTissue damage induced by ionizing radiation in the hematopoietic and gastrointestinal systems is the major cause of lethality in radiological emergency scenarios and underlies some deleterious side effects in patients undergoing radiation therapy. The identification of target-specific interventions that confer radiomitigating activity is an unmet challenge. Here we identify the thrombomodulin (Thbd)-activated protein C (aPC) pathway as a new mechanism for the mitigation of total body irradiation (TBI)-induced mortality.
View Article and Find Full Text PDFBackground: Thrombolysis after acute ischemic stroke has only proven to be beneficial in a subset of patients. The soluble recombinant analogue of human thrombomodulin, Solulin, was studied in an in vivo rat model of acute ischemic stroke.
Methods: Male SD rats were subjected to 2 hrs of transient middle cerebral artery occlusion (tMCAO).
Background And Purpose: Tissue-type plasminogen activator (tPA) is the only drug approved for the acute treatment of ischemic stroke but with two faces in the disease: beneficial fibrinolysis in the vasculature and damaging effects on the neurovascular unit and brain parenchyma. To improve this profile, we developed a novel strategy, relying on antibodies targeting the proneurotoxic effects of tPA.
Methods: After production and characterization of antibodies (αATD-NR1) that specifically prevent the interaction of tPA with the ATD-NR1 of N-methyl-d-aspartate receptors, we have evaluated their efficacy in a model of murine thromboembolic stroke with or without recombinant tPA-induced reperfusion, coupled to MRI, near-infrared fluorescence imaging, and behavior assessments.