Over the past half-century, ultrasound imaging has become a key technology for assessing an ever-widening range of medical conditions at all stages of life. Despite ultrasound's proven value, expensive systems that require domain expertise in image acquisition and interpretation have limited its broad adoption. The proliferation of portable and low-cost ultrasound imaging can improve global health and also enable broad clinical and academic studies with great impact on the fields of medicine.
View Article and Find Full Text PDFBackground: Assessment of mitral regurgitation (MR) severity by echocardiography is important for clinical decision making, but MR severity can be challenging to quantitate accurately and reproducibly. The accuracy of effective regurgitant orifice area (EROA) and regurgitant volume (RVol) calculated using two-dimensional (2D) proximal isovelocity surface area is limited by the geometric assumptions of proximal isovelocity surface area shape, and both variables demonstrate interobserver variability. The aim of this study was to compare a novel automated three-dimensional (3D) echocardiographic method for calculating MR regurgitant flow using standard 2D techniques.
View Article and Find Full Text PDFBackground: Accurate diagnosis of mitral regurgitation (MR) severity is central to proper treatment. Although numerous approaches exist, an accurate, gold-standard clinical technique remains elusive. The authors previously reported on the initial development and demonstration of the automated three-dimensional (3D) field optimization method (FOM) algorithm, which exploits 3D color Doppler ultrasound imaging and builds on existing MR quantification techniques.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
July 2013
Mitral valve regurgitation (MR) is among the most prevalent and significant valve problems in the Western world. Echocardiography plays a significant role in the diagnosis of degenerative valve disease. However, a simple and accurate means of quantifying MR has eluded both the technical and clinical ultrasound communities.
View Article and Find Full Text PDFQuantitative analysis of left ventricular deformation can provide valuable information about the extent of disease as well as the efficacy of treatment. In this work, we develop an adaptive multi-level compactly supported radial basis approach for deformation analysis in 3D+time echocardiography. Our method combines displacement information from shape tracking of myocardial boundaries (derived from B-mode data) with mid-wall displacements from radio-frequency-based ultrasound speckle tracking.
View Article and Find Full Text PDFObjectives: To compute left ventricular (LV) twist from 3-dimensional (3D) echocardiography.
Background: LV twist is a sensitive index of cardiac performance. Conventional 2-dimensional based methods of computing LV twist are cumbersome and subject to errors.
Real-time 3-dimensional echocardiography is increasingly used in clinical cardiology. Studies have been shown that this technique can be accurately used to assess both cardiac mass and chamber volumes. We review the work showing that real-time 3-dimensional Doppler echocardiography can be used to accurately calculate intracardiac flow volumes that can potentially be used to assess cardiac function, intracardiac shunt, and valve regurgitation.
View Article and Find Full Text PDFThree-dimensional (3D) echocardiography (3DE) provides unique orientations of the mitral valve (MV) not obtainable by routine 2-dimensional echocardiography. However, this modality has not been adopted in routine clinical practice because of its cumbersome and time-consuming process. The recent introduction of a full matrix-array transducer has enabled online real-time 3DE (RT3DE) and rendering.
View Article and Find Full Text PDFIn this paper, we studied the problem of feature-based motion tracking in echocardiographic image sequences. We described the relation between possible feature variations and different kinds of tissue motion using a linear convolution model. We also showed that motion-feature decorrelation (which means that the motion parameters estimated using feature tracking fail to represent the underlying tissue motion) compensation is an ill-posed inverse problem.
View Article and Find Full Text PDFAims: Laminar flow stroke volume (SV) quantification in the ascending aorta or pulmonary artery can provide a measure for determining cardiac output (CO). Comparing flows across different valves can also compute shunt volumes and regurgitant fractions. Quantification methods for 3D color Doppler laminar flow volumes have been developed using reconstructive 3D, but these are cumbersome and time-consuming both in acquisition and measurement.
View Article and Find Full Text PDFObjectives: The purpose of this study was to investigate whether cardiac output (CO) could be accurately computed from live three-dimensional (3-D) Doppler echocardiographic data in an acute open-chested animal preparation.
Background: The accurate measurement of CO is important in both patient management and research. Current methods use invasive pulmonary artery catheters or two-dimensional (2-D) echocardiography or esophageal aortic Doppler measures, with the inherent risks and inaccuracies of these techniques.
Echocardiography
October 2003
Three-dimensional echocardiography has multiple advantages over two-dimensional echocardiography, such as accurate left ventricular quantification and improved spatial relationships. However, clinical use of three-dimensional echocardiography has been impeded by tedious and time-consuming methods for data acquisition and post-processing. A newly developed matrix array probe, which allows real-time three-dimensional imaging with instantaneous on-line volume-rendered reconstruction, direct manipulation of thresholding, and cut planes on the ultrasound unit may overcome the aforementioned limitations.
View Article and Find Full Text PDF