Patients with two congenital heart diseases (CHDs), Ebstein's anomaly (EA) and left ventricular noncompaction (LVNC), suffer higher morbidity than either CHD alone. The genetic etiology and pathogenesis of combined EA/LVNC remain largely unknown. We investigated a familial EA/LVNC case associated with a variant (p.
View Article and Find Full Text PDFBackground: Preoperative risk stratification in cardiac surgery includes patient and procedure factors that are used in clinical decision-making. Despite these tools, unidentified factors contribute to variation in outcomes. Identification of latent physiologic risk factors may strengthen predictive models.
View Article and Find Full Text PDFBackground: Clinical rejection (CR) defined as decision to treat clinically suspected rejection with change in immunotherapy based on clinical presentation with or without diagnostic biopsy findings is an important part of care in heart transplantation. We sought to assess the utility of donor fraction cell-free DNA (DF cfDNA) in CR and the utility of serial DF cfDNA in CR patients in predicting outcomes of clinical interest.
Methods: Patients with heart transplantation were enrolled in two sequential, multi-center, prospective observational studies.
Objectives: Mortality rates following pediatric cardiac surgery with cardiopulmonary bypass have declined over decades, but have plateaued in recent years. This is in part attributable to persistent issues with postoperative global inflammation and myocardial dysfunction, commonly manifested by systemic inflammatory response syndrome and low cardiac output syndrome, respectively. Quantified cell-free DNA (cfDNA), of nuclear or mitochondrial origin, has emerged as a biomarker for both inflammation and myocardial injury.
View Article and Find Full Text PDFNumerous genetic studies have established a role for rare genomic variants in Congenital Heart Disease (CHD) at the copy number variation (CNV) and de novo variant (DNV) level. To identify novel haploinsufficient CHD disease genes, we performed an integrative analysis of CNVs and DNVs identified in probands with CHD including cases with sporadic thoracic aortic aneurysm. We assembled CNV data from 7,958 cases and 14,082 controls and performed a gene-wise analysis of the burden of rare genomic deletions in cases versus controls.
View Article and Find Full Text PDFBackground: Elevated total cell-free DNA (TCF) concentration has been associated with critical illness in adults and elevated donor fraction (DF), the ratio of donor specific cell-free DNA to total cell-free DNA present in the recipient's plasma, is associated with rejection following cardiac transplantation. This study investigates relationships between TCF and clinical outcomes after heart transplantation.
Methods: A prospective, blinded, observational study of 87 heart transplantation recipients was performed.
Lifelong noninvasive rejection monitoring in heart transplant patients is a critical clinical need historically poorly met in adults and unavailable for children and infants. Cell-free DNA (cfDNA) donor-specific fraction (DF), a direct marker of selective donor organ injury, is a promising analytical target. Methodological differences in sample processing and DF determination profoundly affect quality and sensitivity of cfDNA analyses, requiring specialized optimization for low cfDNA levels typical of transplant patients.
View Article and Find Full Text PDFHeart transplantation is a well-established therapy for end-stage heart failure in children and young adults. The highest risk of graft loss occurs in the first 60 days post-transplant. Donor fraction of cell-free DNA is a highly sensitive marker of graft injury.
View Article and Find Full Text PDFBMC Bioinformatics
March 2019
Background: RNA-seq, wherein RNA transcripts expressed in a sample are sequenced and quantified, has become a widely used technique to study disease and development. With RNA-seq, transcription abundance can be measured, differential expression genes between groups and functional enrichment of those genes can be computed. However, biological insights from RNA-seq are often limited by computational analysis and the enormous volume of resulting data, preventing facile and meaningful review and interpretation of gene expression profiles.
View Article and Find Full Text PDFHypoplastic left heart syndrome (HLHS) is a clinically and anatomically severe form of congenital heart disease (CHD). Although prior studies suggest that HLHS has a complex genetic inheritance, its etiology remains largely unknown. The goal of this study was to characterize a risk gene in HLHS and its effect on HLHS etiology and outcome.
View Article and Find Full Text PDFPurpose: To test the hypothesis that patients with hypoplastic left heart syndrome (HLHS) and developmental delay will have a higher average summative C-score in ciliopathy genes than patients with HLHS without developmental delay.
Methods: Ciliopathy gene variant burden was determined utilizing a summative C-score for 14 ciliopathy genes in children with HLHS (n = 24). Mean summative C-scores were compared between children with and without developmental delay.
The use of human pluripotent cell progeny for cardiac disease modeling, drug testing and therapeutics requires the ability to efficiently induce pluripotent cells into the cardiomyogenic lineage. Although direct activation of the Activin-A and/or Bmp pathways with growth factors yields context-dependent success, recent studies have shown that induction of Wnt signaling using low molecular weight molecules such as CHIR, which in turn induces the Activin-A and Bmp pathways, is widely effective. To further enhance the reproducibility of CHIR-induced cardiomyogenesis, and to ultimately promote myocyte maturation, we are using exogenous growth factors to optimize cardiomyogenic signaling downstream of CHIR induction.
View Article and Find Full Text PDFCardiac development is a complex, multiscale process encompassing cell fate adoption, differentiation and morphogenesis. To elucidate pathways underlying this process, a recently developed algorithm to reverse engineer gene regulatory networks was applied to time-course microarray data obtained from the developing mouse heart. Approximately 200 genes of interest were input into the algorithm to generate putative network topologies that are capable of explaining the experimental data via model simulation.
View Article and Find Full Text PDFThe clinical significance of copy number variants (CNVs) in congenital heart disease (CHD) continues to be a challenge. Although CNVs including genes can confer disease risk, relationships between gene dosage and phenotype are still being defined. Our goal was to perform a quantitative analysis of CNVs involving 100 well-defined CHD risk genes identified through previously published human association studies in subjects with anatomically defined cardiac malformations.
View Article and Find Full Text PDF