Publications by authors named "Karl Sieradzki"

Iron-chromium and nickel-chromium binary alloys containing sufficient quantities of chromium serve as the prototypical corrosion-resistant metals owing to the presence of a nanometre-thick protective passive oxide film. Should this film be compromised by a scratch or abrasive wear, it reforms with little accompanying metal dissolution, a key criterion for good passive behaviour. This is a principal reason that stainless steels and other chromium-containing alloys are used in critical applications ranging from biomedical implants to nuclear reactor components.

View Article and Find Full Text PDF

When metallic alloys are exposed to a corrosive environment, porous nanoscale morphologies spontaneously form that can adversely affect the mechanical integrity of engineered structures. This form of stress-corrosion cracking is responsible for the well-known 'season cracking' of brass and stainless steel components in nuclear power generating stations. One explanation for this is that a high-speed crack is nucleated within the porous layer, which subsequently injects into non-porous parent-phase material.

View Article and Find Full Text PDF

Dealloying is currently used to tailor the morphology and composition of nanoparticles and bulk solids for a variety of applications including catalysis, energy storage, sensing, actuation, supercapacitors, and radiation damage resistant materials. The known morphologies, which evolve on dealloying of nanoparticles, include core-shell, hollow core-shell, and porous nanoparticles. Here we present results examining the fixed voltage dealloying of AgAu alloy particles in the size range of 2-6 and 20-55 nm.

View Article and Find Full Text PDF

Dealloying, the selective dissolution of one or more of the elemental components of an alloy, is an important corrosion mechanism and a technologically relevant process used to fabricate nanoporous metals for a variety of applications including catalysis, sensing, actuation, supercapacitors and radiation-damage-resistant materials. In noble-metal alloy systems for which the ambient-temperature solid-state diffusivity is minuscule, dealloying occurs at a composition-dependent critical potential above which bicontinuous nanoporous structures evolve and below which a full-coverage layer of the more-noble component forms causing the alloy surface to become passive. In contrast, for alloy systems exhibiting significant solid-state diffusive transport, our understanding of dealloying-induced morphologies and the electrochemical parameters controlling this are largely unexplored.

View Article and Find Full Text PDF

The corrosion behavior of nanometer-scale solids is important in applications ranging from sensing to catalysis. Here we present a general thermodynamic analysis of this for the case of elemental metals and use the analysis to demonstrate the construction of a particle-size-dependent potential-pH diagram for the case of platinum. We discuss the data set required for the construction of such diagrams in general and describe how some parameters are accessible via experiment while others can only be reliably determined from first-principles-based electronic structure calculations.

View Article and Find Full Text PDF

The compressive plastic strength of nanosized single-crystal metallic pillars is known to depend on their diameter D. Herein, the role of pillar height h is analyzed instead, and the suppression of the generalized crystal plasticity below a critical value h(CR) is observed. Novel in situ compression tests on regular pillars as well as nanobuttons, that is, pillars with h < h(CR), show that the latter are much harder, withstanding stresses >2 GPa.

View Article and Find Full Text PDF

Understanding and controlling the electrochemical stability or corrosion behavior of nanometer-scale solids is vitally important in a variety of applications such as nanoscale electronics, sensing, and catalysis. For many applications, the increased surface to volume ratio achieved by particle size reduction leads to lower materials cost and higher efficiency, but there are questions as to whether the intrinsic stability of materials also decreases with particle size. An important example of this relates to the stability of Pt catalysts in, for example, proton exchange fuel cells.

View Article and Find Full Text PDF

Large colloidal environmentally stable silica-coated cobalt particles were synthesized by combining the sodium borohydride reduction in aqueous solution and the Stöber method. Low size polydisperse cobalt spheres with an average size of 95 nm were synthesized by using a borohydride reduction method and were subsequently coated with a thin layer of silica by means of hydrolysis and condensation of tetraethylorothosilicate (TEOS) in an aqueous/ethanolic solution. The large uniform cobalt spheres consist of smaller metallic Co clusters, explaining the superparamagnetic behavior of the spheres.

View Article and Find Full Text PDF