Ultrasonic delamination is a low energy approach for direct recycling of spent lithium-ion batteries. The efficiency of the ultrasonic delamination relies both on the thermophysical properties (such as viscosity, surface tension, and vapour pressure) of the solvent in which the delamination process is carried out, and the properties of the ultrasound source as well as the geometry of the containment vessel. However, the effect of tailoring solutions to optimise cavitation and delamination of battery cathode coatings has not yet been sufficiently investigated.
View Article and Find Full Text PDFDeveloping new functionalities of two-dimensional materials (2Dms) can be achieved by their chemical modification with a broad spectrum of molecules. This functionalization is commonly studied by using spectroscopies such as Raman, IR, or XPS, but the detection limit is a common problem. In addition, these methods lack detailed spatial resolution and cannot provide information about the homogeneity of the coating.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
September 2023
Aluminum-based batteries are a promising alternative to lithium-ion as they are considered to be low-cost and more friendly to the environment. In addition, aluminum is abundant and evenly distributed across the globe. Many studies and Al battery prototypes use imidazolium chloroaluminate electrolytes because of their good rheological and electrochemical performance.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
July 2023
At the core of the aluminum (Al) ion battery is the liquid electrolyte, which governs the underlying chemistry. Optimizing the rheological properties of the electrolyte is critical to advance the state of the art. In the present work, the chloroaluminate electrolyte is made by reacting AlCl with a recently reported acetamidinium chloride (Acet-Cl) salt in an effort to make a more performant liquid electrolyte.
View Article and Find Full Text PDFHere we demonstrate the generation of novel ionic liquid analogue (ILA) electrolytes for aluminium (Al) electrodeposition that are based on salts of amidine Lewis bases. The electrolytes exhibit reversible voltammetric plating/stripping of Al, good ionic conductivities (10-14 mS cm), and relatively low viscosities (50-80 cP). The rheological properties are an improvement on analogous amide-based ILAs and make these liquids credible alternatives to ILAs based on urea or acetamide, or conventional chloroaluminate ionic liquids (IL) for Al battery applications.
View Article and Find Full Text PDFDeep eutectic solvents (DESs) were used as alternatives to the aqueous phase in solvent extraction of iron(iii), zinc(ii) and lead(ii). The selective extraction of iron(iii) and zinc(ii) was studied from a feed of ethaline (1 : 2 molar ratio of choline chloride : ethylene glycol) and lactiline (1 : 2 molar ratio of choline chloride : lactic acid), with the former DES being more selective. A commercial mixture of trialkylphosphine oxides (Cyanex 923, C923) diluted in an aliphatic diluent selectively extracted iron(iii) from a feed containing also zinc(ii) and lead(ii).
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFRapid growth in the market for electric vehicles is imperative, to meet global targets for reducing greenhouse gas emissions, to improve air quality in urban centres and to meet the needs of consumers, with whom electric vehicles are increasingly popular. However, growing numbers of electric vehicles present a serious waste-management challenge for recyclers at end-of-life. Nevertheless, spent batteries may also present an opportunity as manufacturers require access to strategic elements and critical materials for key components in electric-vehicle manufacture: recycled lithium-ion batteries from electric vehicles could provide a valuable secondary source of materials.
View Article and Find Full Text PDFAlternating anodic and cathodic current pulses have been applied to a metal powder on an electrode surface to fuse the particles together. It is shown that homogeneous films can be electroformed with different morphologies depending on the size of the powder and the experimental conditions.
View Article and Find Full Text PDFElectroactive films based on conducting polymers have numerous potential applications, but practical devices frequently require a combination of properties not met by a single component. This has prompted an extension to composite materials, notably those in which particulates are immobilised within a polymer film. Irrespective of the polymer and the intended application, film wetting is important: by various means, it facilitates transport processes - of electronic charge, charge-balancing counter ions ("dopant") and analyte/reactant molecules - and motion of polymer segments.
View Article and Find Full Text PDFQuantitative mapping of metal ions freely diffusing in solution is important across a diverse range of disciplines and is particularly significant for dissolution processes in batteries, metal corrosion, and electroplating/polishing of manufactured components. However, most current techniques are invasive, requiring sample extraction, insertion of an electrode, application of an electric potential or the inclusion of a molecular sensor. Thus, there is a need for techniques to visualize the distribution of metal ions non-invasively, in situ, quantitatively, in three dimensions (3D) and in real time.
View Article and Find Full Text PDFIn this study we compare the electrochemical and structural properties of three gold salts AuCl, AuCN and KAu(CN)2 in a Deep Eutectic Solvent (DES) electrolyte (Ethaline 200) in order to elucidate factors affecting the galvanic deposition of gold coatings on nickel substrates. A chemically reversible diffusion limited response was observed for AuCl, whereas AuCN and KAu(CN)2 showed much more complicated, kinetically limited responses. Galvanic exchange reactions were performed on nickel substrates from DES solutions of the three gold salts; the AuCN gave a bright gold coating, the KAu(CN)2 solution give a visibly thin coating, whilst the coating from AuCl was dull, friable and poorly adhesive.
View Article and Find Full Text PDFThe electrodeposition of aluminium is demonstrated using a eutectic mixture of aluminium chloride and urea. The mixture is shown to be conducting through the formation of both cationic ([AlCl2·urean](+)) and anionic (AlCl4(-)) species and electrodeposition is achieved through the cationic species. The use of a biphasic system with the ionic liquid and a protective hydrocarbon layer allows metal deposition to be carried out in an environment with ambient moisture without the need for a glove box.
View Article and Find Full Text PDFThe speciation of metals in solution controls their reactivity, and this is extremely pertinent in the area of metal salts dissolved in ionic liquids. In the current study, the speciation of 25 metal salts is investigated in four deep eutectic solvents (DESs) and five imidazolium-based ionic liquids using extended X-ray absorption fine structure. It is shown that in diol-based DESs M(I) ions form [MCl2](-) and [MCl3](2-) complexes, while all M(II) ions form [MCl4](2-) complexes, with the exception of Ni(II), which exhibits a very unusual coordination by glycol molecules.
View Article and Find Full Text PDFThe electrodeposition of chromium is a technologically vital process, which is principally carried out using aqueous chromic acid. In the current study, it is shown that eutectic mixtures of urea and hydrated chromium(III) chloride provide a liquid which reduces the toxicological issues associated with the current aqueous Cr(VI) electroplating solution. Using EXAFS, mass spectrometry and UV-Vis spectroscopy, it is shown that chromium is present predominantly as a cationic species.
View Article and Find Full Text PDFBiscyclometallated iridium complexes [Ir(ppz)2(X^Y)][PF6] (X^Y = pyridine imine) have been synthesised. The pyridineimine ligands are prepared in situ during the complexation. The complexes show room temperature emission between 640 and 780 nm in CH2Cl2 solution.
View Article and Find Full Text PDFPhys Chem Chem Phys
October 2013
The electrodeposition of metals from ionic solutions is intrinsically linked to the reactivity of the solute ions. When metal salts dissolve, the exchange of the anion with the molecular and ionic components from solution affects the speciation and therefore the characteristics of metal reduction. This study investigates the nucleation mechanism, deposition kinetics, metal speciation and diffusion coefficients of silver salts dissolved in Deep Eutectic Solvents.
View Article and Find Full Text PDFThis study has shown for the first time that digital holographic microscopy (DHM) can be used as a new analytical tool in analysis of kinetic mechanism and growth during electrolytic deposition processes. Unlike many alternative established electrochemical microscopy methods such as probe microscopy, DHM is both the noninvasive and noncontact, the unique holographic imaging allows the observations and measurement to be made remotely. DHM also provides interferometric resolution (nanometer vertical scale) with a very short acquisition time.
View Article and Find Full Text PDFPhys Chem Chem Phys
February 2012
Silver is an important metal for electronic connectors, however, it is extremely soft and wear can be a significant issue. This paper describes how improved wear resistant silver coatings can be obtained from the electrolytic deposition of silver from a solution of AgCl in an ethylene glycol/choline chloride based Deep Eutectic Solvent. An up to 10-fold decrease in the wear volume is observed by the incorporation of SiC or Al(2)O(3) particles.
View Article and Find Full Text PDF