Metal-organic frameworks (MOFs) featuring zirconium-based clusters are widely used for the development of functionalized materials due to their exceptional stability. In this study, we report the synthesis of a novel N,N,N-ligand compatible with a biphenyl dicarboxylic acid-based MOF. However, the resulting copper(I) complex exhibited unexpected coordination behaviour, lacking the intended trifold coordination motif.
View Article and Find Full Text PDFHerein, we report two new COOH-functionalized metal-organic frameworks (MOFs) of composition [M O (OH) (PMA) (H PMA)]×H O, M=Zr, Hf), denoted CAU-61, synthesized by using pyromellitic acid (H PMA), a tetracarboxylic acid, as the linker and acetic acid as the solvent. The structure was determined from powder X-ray diffraction data and one-dimensional inorganic building units are connected through tetracarboxylate as well as dicarboxylate linker molecules, resulting in highly stable microporous framework structures with limiting and maximum pore diameter of ∼3.6 and ∼5.
View Article and Find Full Text PDFThe transition from integrated petrochemical complexes toward decentralized chemical plants utilizing distributed feedstocks calls for simpler downstream unit operations. Less separation steps are attractive for future scenarios and provide an opportunity to design the next-generation catalysts, which function efficiently with effluent reactant mixtures. The methanol to olefins (MTO) reaction constitutes the second step in the conversion of CO, CO, and H to light olefins.
View Article and Find Full Text PDFFlexible metal-organic frameworks (MOFs) are known for their vast functional diversities and variable pore architectures. Dynamic motions or perturbations are among the highly desired flexibilities, which are key to guest diffusion processes. Therefore, probing such motions, especially at an atomic level, is crucial for revealing the unique properties and identifying the applications of MOFs.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
November 2020
Herein, we report the discovery of a toroidal inorganic cluster of zirconium(IV) oxysulfate of unprecedented size with the formula Zr (SO ) (O/OH) ⋅x(H O) (Zr ), which displays different packing of ring units and thus several polymorphic crystal structures. The ring measures over 3 nm across, has an inner cavity of 1 nm and displays a pseudo-10-fold rotational symmetry of Zr octahedra bridged by an additional Zr in the outer rim of the ring. Depending on the co-crystallizing species, the rings form various crystalline phases in which the torus units are connected in extended chain and network structures.
View Article and Find Full Text PDFFour different ruthenium(ii) complexes were incorporated into the metal-organic framework (MOF) UiO-67 using three different synthetic strategies: premade linker synthesis, postsynthetic functionalization, and postsynthetic linker exchange. One of these complexes was of the type (N-N)Ru, and three of the complexes were of the type (N-N)(N-C)Ru, where N-N is a bipyridine-type ligand and N-C is a cyclometalated phenylpyridine-type ligand. The resulting materials were characterized by PXRD, SC-XRD (the postsynthetic functionalization MOFs), N sorption, TGA-DSC, SEM, EDS, and UV-Vis spectroscopy, and were digested in base for subsequent H NMR analysis.
View Article and Find Full Text PDFC-H activation reactions are generally associated with relatively low turnover numbers (TONs) and high catalyst concentrations due to a combination of low catalyst stability and activity, highlighting the need for recyclable heterogeneous catalysts with stable single-atom active sites. In this work, several palladium loaded metal-organic frameworks (MOFs) were tested as single-site catalysts for the oxidative coupling of arenes (-xylene) C-H/C-H activation. Isolation of the palladium active sites on the MOF supports reduced Pd(0) aggregate formation and thus catalyst deactivation, resulting in higher turnover numbers (TONs) compared to the homogeneous benchmark reaction.
View Article and Find Full Text PDFInorg Chem
January 2019
We describe the synthesis and corresponding full characterization of the set of UiO-66 metal-organic frameworks (MOFs) with 1,4-benzenedicarboxylate (CH(COOH), hereafter HBDC) and 1,4-naphthalenedicarboxylate (CH(COOH), hereafter HNDC) mixed linkers with NDC contents of 0, 25, 50, and 100%. Their structural (powder X-ray diffraction, PXRD), adsorptive (N, H, and CO), vibrational (IR/Raman), and thermal stability (thermogravimetric analysis, TGA) properties quantitatively correlate with the NDC content in the material. The UiO-66 phase topology is conserved at all relative fractions of BDC/NDC.
View Article and Find Full Text PDFThe deactivation of zeolite catalyst H-ZSM-5 by coking during the conversion of methanol to hydrocarbons was monitored by high-energy space- and time-resolved operando X-ray diffraction (XRD) . Space resolution was achieved by continuous scanning along the axial length of a capillary fixed bed reactor with a time resolution of 10 s per scan. Using real structural parameters obtained from XRD, we can track the development of coke at different points in the reactor and link this to a kinetic model to correlate catalyst deactivation with structural changes occurring in the material.
View Article and Find Full Text PDFSubstituting metals for either aluminum or phosphorus in crystalline, microporous aluminophosphates creates Brønsted acid sites, which are well known to catalyze several key reactions, including the methanol to hydrocarbons (MTH) reaction. In this work, we synthesized a series of metal-substituted aluminophosphates with AFI topology that differed primarily in their acid strength and that spanned a predicted range from high Brønsted acidity (H-MgAlPO-5, H-CoAlPO-5, and H-ZnAlPO-5) to medium acidity (H-SAPO-5) and low acidity (H-TiAlPO-5 and H-ZrAlPO-5). The synthesis was aimed to produce materials with homogenous properties (e.
View Article and Find Full Text PDFThe new porphyrin-based tetraphosphonic acid (Ni-HTPPP) was employed in the synthesis of four isostructural MOFs of composition [M(Ni-HTPPP)(HO)], denoted CAU-29 (M = Mn, Co, Ni, Cd). Ni-CAU-29 was thoroughly characterized regarding its thermal and chemical stability as well as for proton conductivity.
View Article and Find Full Text PDFCu-exchanged zeolites possess active sites that are able to cleave the C-H bond of methane at temperatures ≤200 °C, enabling its selective partial oxidation to methanol. Herein we explore this process over Cu-SSZ-13 materials. We combine activity tests and X-ray absorption spectroscopy (XAS) to thoroughly investigate the influence of reaction parameters and material elemental composition on the productivity and Cu speciation during the key process steps.
View Article and Find Full Text PDFZeolites representing seven different topologies were subjected to life-time assessment studies as methanol to hydrocarbons (MTH) catalysts at 400 °C, P(MeOH) = 13 kPa and P(tot) = 100 kPa. The following topologies were studied: ZSM-22 (TON), ZSM-23 (MTT), IM-5 (IMF), ITQ-13 (ITH), ZSM-5 (MFI), mordenite (MOR) and beta (BEA). Two experimental approaches were used.
View Article and Find Full Text PDFA cerium-based metal-organic framework with MOF-76 topology has been synthesized by a very simple and fast solvothermal method that has been tested for a one gram yield. Variable-temperature powder XRD and X-ray absorption data, analyzed by Rietveld and multiple-scattering extended X-ray absorption fine-structure methods, revealed high thermal stability and the presence of three different stable structures. X-ray absorption near-edge structure and FTIR spectroscopy probed the presence of cerium(III), which was characterized by coordinatively unsaturated sites that, however, played no major role in carbon dioxide adsorption.
View Article and Find Full Text PDFA series of mixed-ligand [1,4-benzenedicarboxylic acid (BDC)/2-amino-1,4-benzenedicarboxylic acid (ABDC)] UiO-66 metal-organic frameworks (MOFs) synthesized through two different methods (low (LT) and high temperature (HT)) have been investigated for their carbon dioxide adsorption properties from 0 to 1 bar to clarify the role of amino loading on carbon dioxide uptake. Volumetric CO2 isotherms show that the CO2 capacity (normalized to the Langmuir surface area) increases with a degree of functionalization of about 46%; for similar NH2 contents, the same values are found for both synthetic procedures. Microcalorimetric isotherms reveal that amino-functionalized materials have a larger differential heat of adsorption (q(diff) ) towards CO2 ; reaching 27(25) and 20(22) kJ mol(-1) on HT(LT)-UiO-66-NH2 and UiO-66, respectively, at the lowest equilibrium pressures used in this study.
View Article and Find Full Text PDFA series of amine-functionalized mixed-linker metal-organic frameworks (MOFs) of idealized structural formula Zr6O4(OH)4(BDC)(6-6X)(ABDC)6X (where BDC = benzene-1,4-dicarboxylic acid, ABDC = 2-aminobenzene-1,4-dicarboxylic acid) has been prepared by solvothermal synthesis. The materials have been characterized by thermogravimetric analysis (TGA), powder X-ray diffraction (PXRD), and Fourier transform infrared (FTIR) spectroscopy with the aim of elucidating the effect that varying the degrees of amine functionalization has on the stability (thermal and chemical) and porosity of the framework. This work includes the first application of ultraviolet-visible light (UV-vis) spectroscopy in the quantification of ABDC in mixed-linker MOFs.
View Article and Find Full Text PDFHerein we report FTIR in situ adsorption of molecular hydrogen, carbon monoxide, water, methanol, pyridine and 2,4,6-trimethylpyridine (collidine) on nanosheet H-ZSM-5 which was recently studied in the methanol to hydrocarbons (MTH) reaction. The nature of the hydroxyl groups and surface species are described in detail. The IR spectrum of nanosheet H-ZSM-5 is dominated by silanols, which saturate the external surfaces.
View Article and Find Full Text PDFActa Crystallogr Sect E Struct Rep Online
February 2013
In the title compound, [Cu(2)Cl(4)(C(12)H(8)N(2)O(4))(2)]·4C(3)H(7)NO, which contains a chloride-bridged centrosymmetric Cu(II) dimer, the Cu(II) atom is in a distorted square-pyramidal 4 + 1 coordination geometry defined by the N atoms of the chelating 2,2'-bipyridine ligand, a terminal chloride and two bridging chloride ligands. Of the two independent dimethyl-formamide mol-ecules, one is hydrogen bonded to a single -COOH group, while one links two adjacent -COOH groups via a strong accepted O-H⋯O and a weak donated C(O)-H⋯O hydrogen bond. Two of these last mol-ecules and the two -COOH groups form a centrosymmetric hydrogen-bonded ring in which the CH=O and the -COOH groups by disorder adopt two alternate orientations in a 0.
View Article and Find Full Text PDFLiquid hydrocarbon fuels play an essential part in the global energy chain, owing to their high energy density and easy transportability. Olefins play a similar role in the production of consumer goods. In a post-oil society, fuel and olefin production will rely on alternative carbon sources, such as biomass, coal, natural gas, and CO(2).
View Article and Find Full Text PDFPhys Chem Chem Phys
February 2012
The recently discovered UiO-66/67/68 class of isostructural metallorganic frameworks (MOFs) [J. H. Cavka et al.
View Article and Find Full Text PDFA new zeotype titanium silicate oxidation catalyst with the STT topology has been synthesized from direct synthesis. Ti-STT has a microporous structure with small pore openings, allowing shape selective oxidation catalysis. The isomorphous substitution of Si by Ti in the framework has been confirmed by Raman, FT-IR, UV-VIS and XANES spectroscopies.
View Article and Find Full Text PDFFour 3D 10-ring zeolites, IM-5, TNU-9, ZSM-11 and ZSM-5, with Si/Al = 14-24 and crystal sizes below 2 microns, were tested as catalysts for the methanol to hydrocarbons reaction (MTH) at atmospheric pressure, 350 °C and WHSV = 9 h(-1). All catalysts gave initially full methanol conversion, and showed strikingly similar effluent product selectivities. However, their life-time duration differed significantly, and decreased in the order: ZSM-11 > ZSM-5 ≫ TNU-9 > IM-5.
View Article and Find Full Text PDFThe large unit cells, the enormous flexibility and variation in structural motifs of MOFs represent a big challenge in the characterization of MOF materials, particularly in cases where single crystal diffraction data are not available. In this critical review it is shown that in cases where only powder diffraction data are available additional structural information, particularly regarding local coordination within the inorganic cluster, are often mandatory in order to solve the structure. There are also cases where the inorganic cluster does not follow the symmetry of the overall structure.
View Article and Find Full Text PDFThe methylation of ethene by methyl chloride and methanol in the microporous materials SAPO-34 and SSZ-13 has been studied using different periodic atomistic modeling approaches based on density functional theory. The RPBE functional, which earlier has been used successfully in studies of surface reactions on metals, fails to yield a qualitatively correct description of the transition states under study. Employing B3LYP as functional gives results in line with experimental data: (1) Methanol is adsorbed more strongly than methyl chloride to the acid site.
View Article and Find Full Text PDFTemplate decomposition followed by confocal fluorescence microscopy reveals a tetragonal-pyramidal intergrowth of subunits in micrometer-sized nearly cubic SSZ-13 zeolite crystals. In order to accentuate intergrowth boundaries and defect-rich areas within the individual large zeolite crystals, a treatment with an etching NaOH solution is applied. The defective areas are visualized by monitoring the spatial distribution of fluorescent tracer molecules within the individual SSZ-13 crystals by confocal fluorescence microscopy.
View Article and Find Full Text PDF