Publications by authors named "Karl Oetjen"

Aqueous film-forming foams (AFFFs) are proprietary mixtures containing hydrocarbon surfactants and per- and polyfluoroalkyl substances (PFASs) that are used to extinguish hydrocarbon-based fuel fires. There is limited information on hydrocarbon surfactants in AFFFs and AFFF-contaminated groundwater even though hydrocarbon surfactants are more abundant (5-10% w/w) than PFASs (0.9-1.

View Article and Find Full Text PDF

Urban-use pesticides are of increasing concern as they are widely used and have been linked to toxicity of aquatic organisms. To assess the occurrence and treatment of these pesticides in stormwater runoff, an approach combining field sampling and watershed-scale modeling was employed. Stormwater samples were collected at four locations in the lower San Diego River watershed during a storm event and analyzed for fipronil, three of its degradation products, and eight pyrethroids.

View Article and Find Full Text PDF

Hydraulic fracturing wastewaters (HFWWs) contain synthetic organic components and metal ions derived from the formation waters. The risk of spills of HFWW that could impact soil quality and water resources is of great concern. The ability of synthetic components, such as surfactants, in HFWW to be transported through soil and to mobilize metals in soil was examined using column experiments.

View Article and Find Full Text PDF

Hydraulic fracturing (HF) has allowed for the utilization of previously unattainable shale oil and gas (O&G) resources. After HF is complete, the waters used to increase the facies' permeability return uphole as wastewaters. When these waters return to the surface, they are characterized by complex organic and inorganic chemistry, and can pose a health risk if not handled correctly.

View Article and Find Full Text PDF

Aqueous film-forming foams (AFFFs), containing per- and polyfluoroalkyl substances (PFASs), are released into the environment during response to fire-related emergencies. Repeated historical applications of AFFF at military sites were a result of fire-fighter training exercises and equipment testing. Recent data on AFFF-impacted groundwater indicates that ∼25% of the PFASs remain unidentified.

View Article and Find Full Text PDF