Publications by authors named "Karl O Stuen"

Extending the resolution and spatial proximity of lithographic patterning below critical dimensions of 20 nm remains a key challenge with very-large-scale integration, especially if the persistent scaling of silicon electronic devices is sustained. One approach, which relies upon the directed self-assembly of block copolymers by chemical-epitaxy, is capable of achieving high density 1 : 1 patterning with critical dimensions approaching 5 nm. Herein, we outline an integration-favourable strategy for fabricating high areal density arrays of aligned silicon nanowires by directed self-assembly of a PS-b-PMMA block copolymer nanopatterns with a L(0) (pitch) of 42 nm, on chemically pre-patterned surfaces.

View Article and Find Full Text PDF

We present a simple and cost-effective method for the fabrication of antireflective surfaces by self-assembly of block copolymers and subsequent plasma etching. The block copolymers create randomly oriented periodic patterns, which are further transferred into fused silica substrates. The reflection on the patterned fused silica surface is reduced to well below 1% in the ultraviolet, visible, and near-infrared ranges by exploiting subwavelength nanostructures with periodicities down to 48 nm.

View Article and Find Full Text PDF

Ternary blends of cylinder-forming polystyrene-block-poly(methyl methacrylate) block copolymers and polystyrene and poly(methyl methacrylate) homopolymers were assembled in trench features of constant width. Increasing the fraction of homopolymer in the blend increased the spacing and size of block copolymer domains, which were oriented perpendicular to the substrate to form a hexagonal lattice within the trench. The number of rows of cylinders within the trench was controlled by the blend composition.

View Article and Find Full Text PDF