Despite the huge efforts to deploy wireless communications technologies in smart manufacturing scenarios, some manufacturing sectors are still slow to massive adoption. This slowness of widespread adoption of wireless technologies in cyber-physical systems (CPS) is partly due to not fully understanding the detailed impact of wireless deployment on the physical processes especially in the cases that require low latency and high reliability communications. In this paper, we introduce an approach to integrate wireless network traffic data and physical processes data in order to evaluate the impact of wireless communications on the performance of a manufacturing factory work-cell.
View Article and Find Full Text PDFUnlabelled: Current product composition and quality test methods for the paper and pulp industry are mainly based on manual ex-situ wet-bench chemistry techniques. For example, the standard method for determining the furnish of paper, TAPPI T 401 "Fiber analysis of paper and paperboard," relies on the experience and visual acuity of a specially trained analyst to determine the individual plant species present and to quantify the amount of each constituent fiber type in a sheet of paper. Thus, there is a need for a fast, nondestructive analytical technique that leverages intrinsic attributes of the analytes.
View Article and Find Full Text PDFIn this paper, we discuss the use of broadband microwaves (MW) to characterize the thermal stability of organic and hybrid silicon-organic thin films meant for insulation applications in micro- and nanoelectronic devices. We take advantage of MW propagation characteristics to extract and examine the relationships between electrical properties and the chemistry of prototypical low-k materials. The impact of thermal anneal at modest temperatures is examined to shed light on the thermal-induced performance and reliability changes within the dielectric films.
View Article and Find Full Text PDF