Publications by authors named "Karl Mandel"

The development of effective recycling technologies is essential for the recovery and reuse of the raw materials required for lithium-ion batteries (LIBs). Future recycling processes depend on accessible information, necessitating the implementation of a digital battery passport. The European battery regulation mandates the use of a machine-readable identifier physically attached to the batteries for accessing digital information.

View Article and Find Full Text PDF

Dual-gasochromic supraparticles that undergo rapid eye-readable and gas-specific colour changes upon reaction with hydrogen or ammonia are reported. This functionality is achieved by tailoring the solid-liquid-gas interface within the mesoporous framework of supraparticles spray-drying.

View Article and Find Full Text PDF

The structure of supraparticles (SPs) is a key parameter for achieving advanced functionalities arising from the combination of different nanoparticle (NP) types in one hierarchical entity. However, whenever a droplet-assisted forced assembly approach is used, e.g.

View Article and Find Full Text PDF

This work introduces a new sustainable alternative of powdered activated carbon (PAC) - magnetically harvestable and reusable after regeneration via inductive heating - for the adsorptive removal of organic micropollutants (OMP) from secondary wastewater effluents. For this purpose, two commercial PACs - lignite "L" (1187 m/g) and coconut "C"-based (1524 m/g) - were modified with magnetic iron oxide following two different synthesis approaches: infiltration ("infiltr") and surface deposition ("depos") route. The resulting magnetic powdered activated carbons (mPAC) and their precursor PACs were fully characterized before application.

View Article and Find Full Text PDF

Increased particulate matter (PM) concentrations in our ambient air are the cause of various life-threatening diseases and consequently need to be reduced to nonhazardous levels. The natural PM removal capabilities of leaves inspired the development of a low-cost coating technology that exploits natural weather phenomena for its PM catching and removal processes. The herein presented coating is based on microparticle-filled silicone with optimized chemical and physical surface properties.

View Article and Find Full Text PDF

The structure and texture of supraparticles determine their properties and performance, thus playing a critical role in research studies as well as industrial applications. The addition of salts is a well-known strategy to manipulate the colloidal stability of nanoparticles. In this study, this approach is used to tune the structure of spray-dried supraparticles.

View Article and Find Full Text PDF

Spray-drying is a popular and well-known "drying tool" for engineers. This perspective highlights that, beyond this application, spray-drying is a very interesting and powerful tool for materials chemists to enable the design of multifunctional and hybrid materials. Upon spray-drying, the confined space of a liquid droplet is narrowed down, and its ingredients are forced together upon "falling dry.

View Article and Find Full Text PDF

Materials are the fundament of the physical world, whereas information and its exchange are the centerpieces of the digital world. Their fruitful synergy offers countless opportunities for realizing desired digital transformation processes in the physical world of materials. Yet, to date, a perfect connection between these worlds is missing.

View Article and Find Full Text PDF

A novel GaPt-based supported catalytically active liquid metal solution (SCALMS) material is developed by exploiting the suprabead concept: Supraparticles, micrometer-sized particles composed of nanoparticles assembled by spray-drying, are bonded to millimeter-sized beads. The suprabeads combine macroscale size with catalytic properties of nanoscale GaPt particles entrapped in their silica framework.

View Article and Find Full Text PDF

Robotic systems facilitate relatively simple human-robot interaction for non-robot experts, providing the flexibility to implement different processes. In this context, shorter process times, as well as an increased product and process quality could be achieved. Robots short time-consuming processes, take over ergonomically unfavorable tasks and work efficiently all the time.

View Article and Find Full Text PDF

Most analytical techniques used to study the surface chemical properties of superparamagnetic iron oxide nanoparticles (SPIONs) are barely suitable for in situ investigations in liquids, where SPIONs are mostly applied for hyperthermia therapy, diagnostic biosensing, magnetic particle imaging or water purification. Magnetic particle spectroscopy (MPS) can resolve changes in magnetic interactions of SPIONs within seconds at ambient conditions. Herein, we show that by adding mono- and divalent cations to citric acid capped SPIONs, the degree of agglomeration can be utilized to study the selectivity of cations towards surface coordination motifs via MPS.

View Article and Find Full Text PDF

The recent transition to H-based energy storage demands reliable H sensors that allow for easy, fast, and reliable detection of leaks. Conventional H detectors are based on the changes of physical properties of H probes induced by subsurface H-atoms to a material such as electrical conductivity. Herein, we report on highly reactive gasochromic H detectors based on the adsorption of H on the material surface.

View Article and Find Full Text PDF

Luminomagnetic composites have been synthesized that allow for an individual tuning of luminescence intensity, chromaticity and magnetization by combination of superparamagnetic, citrate-stabilized iron oxide nanoparticles with the luminescent MOFs [Ln (BDC) (H O) ] (Ln=Eu, Tb; BDC =terephthalate). The components are arranged to a concept of inverse structuring compared to previous luminomagnetic composites with MOF@magnetic particle (shell@core) composition so that the luminescent MOF now acts as core and is covered by magnetic nanoparticles forming the satellite shell. Thereby, the magnetic and photophysical properties are individually tuneable between high emission intensity (1.

View Article and Find Full Text PDF

Optical microscale shear-stress indicator particles are of interest for the in situ recording of localized forces, e.g., during 3D printing or smart skins in robotic applications.

View Article and Find Full Text PDF

Small-sized temperature indicator additives autonomously record temperature events via a gradual irreversible signal change. This permits, for instance, the indication of possible cold-chain breaches or failure of electronics but also curing of glues. Thus, information about the materials' thermal history can be obtained upon signal detection at every point of interest.

View Article and Find Full Text PDF

Identifying and ensuring the integrity of products plays an important role in today's globalized world. Miniaturized information taggants in the packaging surface are therefore required to monitor the product itself instead of applying external labels. Ideally, multiple types of information are stored in such additives.

View Article and Find Full Text PDF

Small scratches and abrasion cause damage to packaging coatings. Albeit often invisible to the human eye, such small defects in the coating may ultimately have a strong negative impact on the whole system. For instance, gases may penetrate the coating and consequently the package barrier, thus leading to the degradation of sensitive goods.

View Article and Find Full Text PDF

(Sub)micrometer-scaled identification (ID) taggants enable direct identification of arbitrary goods, thereby opening up application fields based on the possibility of tracking, tracing, and anti-counterfeiting. Due to their small dimensions, these taggants can equip in principle even the smallest subcomponents or raw materials with information. To achieve the demanded applicability, the mostly used optically encoded ID taggants must be further improved.

View Article and Find Full Text PDF

Spray-drying is a scalable process enabling one to assemble freely chosen nanoparticles into supraparticles. Atomic layer deposition (ALD) allows for controlled thin film deposition of a vast variety of materials including exotic ones that can hardly be synthesized by wet chemical methods. The properties of coated supraparticles are defined not only by the nanoparticle material chosen and the nanostructure adjusted during spray-drying but also by surface functionalities modified by ALD, if ALD is capable of modifying not only the outer surfaces but also surfaces buried inside the porous supraparticle.

View Article and Find Full Text PDF

Herein, a simple model setup is presented to spray fine liquid droplets containing nanoparticles in an air stream transporting this toward a filter material. The nanoparticles are made of silica and tagged with a fluorescent dye in order to render the trace of the particles easily visible. The silica nanoparticles, in a first approximation, mimic virus (severe acute respiratory syndrome coronavirus 2) particles.

View Article and Find Full Text PDF

Communicating objects are demanded for product security and the concepts of a circular economy or the Internet of Nano Things. Smart additives in the form of particles can be the key to equip objects with the desired materials intelligence as their miniaturized size improves applicability and security. Beyond their proposed identification by optical signals, magnetic signals deriving from magnetic particles can hypothetically be used for identification but are to date only resolved roughly.

View Article and Find Full Text PDF

The controlled agglomeration of superparamagnetic iron oxide nanoparticles (SPIONs) was used to rapidly switch their magnetic properties. Small-angle X-ray scattering (SAXS) and dynamic light scattering showed that tailored iron oxide nanoparticles with phase-changing organic ligand shells agglomerate at temperatures between 5 °C and 20 °C. We observed the concurrent change in magnetic properties using magnetic particle spectroscopy (MPS) with a temporal resolution on the order of seconds and found reversible switching of magnetic properties of SPIONs by changing their agglomeration state.

View Article and Find Full Text PDF

Calcination of nanoparticles is always accompanied by undesired sintering. A calcination route preventing hard-agglomeration to bulk lumps, which is transferable to almost any kind of metal oxide nanoparticle, is developed by surrounding targeted nanoparticles by silica nanoparticles within a nanostructured microparticle. After calcination, the desired nanoparticles are regained as a monodisperse sol silica dissolution.

View Article and Find Full Text PDF

Superparamagnetic iron oxide nanoparticles can be assembled to form anisotropic microrod supraparticles with the assistance of a magnetic field during synthesis. Optionally, these iron oxide microrods can furthermore be coated with a thin silica shell. Due to their anisotropic structure, both microrod types can be aligned in a magnetic field while being dispersed in a matrix material which can be cured during the alignment of the microrods.

View Article and Find Full Text PDF

This work proposes a technology for phosphonate removal from wastewater using magnetically separable microparticles modified with a tailored ZnFeZr-oxyhydroxide adsorbent material which proved to be highly efficient, reaching a maximum loading of ∼20 mg nitrilotrimethylphosphonic acid-P/g (215 μmol NTMP/g) at room temperature, pH 6 and 30 min contact time. The adsorption process at pH < 7 was fast, following the pseudo-second-order kinetics model. Furthermore, NTMP adsorption onto ZnFeZr-oxyhydroxide proved to be endothermic.

View Article and Find Full Text PDF