Publications by authors named "Karl Kue"

Singlet fission (SF) is a process where a singlet exciton is split into a pair of triplet excitons. The increase in the excitonic generation can be exploited to enhance the efficiency of solar cells. Molecules with conjugated π bonds are commonly developed for optoelectronic applications including SF, due to their low energy gaps.

View Article and Find Full Text PDF

This article summarizes technical advances contained in the fifth major release of the Q-Chem quantum chemistry program package, covering developments since 2015. A comprehensive library of exchange-correlation functionals, along with a suite of correlated many-body methods, continues to be a hallmark of the Q-Chem software. The many-body methods include novel variants of both coupled-cluster and configuration-interaction approaches along with methods based on the algebraic diagrammatic construction and variational reduced density-matrix methods.

View Article and Find Full Text PDF

Intramolecular singlet fission and triplet-triplet annihilation (TTA) has been experimentally observed and reported. However, problems remain in theoretically accounting for the corresponding intramolecular electronic couplings and their rates. We used the fragment excitation difference (FED) scheme to calculate the coupling with states from restricted active-space spin-flip configuration interaction.

View Article and Find Full Text PDF

The fragment excitation difference (FED) scheme is a useful method for calculating the complete diabatic couplings of various energy transfer systems. The lack of a good definition for the transformation of the transition density matrix to the off-diagonal FED matrix elements limits FED to single-excitation methods. We have developed a generalized FED scheme called the θ-optimized FED (θ-FED) scheme which does not require transforming the transition density matrices.

View Article and Find Full Text PDF