Publications by authors named "Karl Klinkhammer"

The expanded ligand N,N'-dimethyl-N,N'-dipyridin-2-yl-pyridin-2,6-diamine (ddpd) coordinates to copper(II) ions in a meridional fashion giving the dicationic complex mer-[Cu(ddpd)(2)](BF(4))(2) (1). In the solid state at temperatures below 100 K the cations of 1 localize in Jahn-Teller elongated CuN(6) polyhedra with the longest Cu-N bond pointing in the molecular x or y directions while the z axis is constrained by the tridentate ddpd ligand. The elongated polyhedra are ordered in an antiferrodistortive way giving an idealized zincblende structure.

View Article and Find Full Text PDF

In this report we present the synthesis and the detailed electron paramagnetic resonance (EPR) spectroscopic characterization of novel trivalent lead- and tin-based radicals comprising sterically demanding germyl substituents. The investigated radicals are derived from the recently reported trihypersilyl-substituted tetryl radicals *PbHyp3 and *SnHyp3. The tetryl radicals *Pb(Ge(SiMe3)3)3 (8), *Pb(Ge(SiMe3)3)2Si(SiMe3)3 (9), *PbGe(SiMe3)3(Si(SiMe3)3)2 (10), and *Sn(Ge(SiMe3)3)3 (11) show substitution patterns derived from stepwise (9, 10) or complete (8, 11) substitution of hypersilyl groups (Hyp = Si(SiMe3)3) in *PbHyp3 and *SnHyp3 by homologous hypergermyl groups (Hge = Ge(SiMe3)3).

View Article and Find Full Text PDF

The kinetic and thermodynamic stabilities of the group 13 hydrides EH(3) (E = B, Al, Ga, In, Tl, E113) are investigated by relativistic density functional and wave function based theories. The unimolecular decomposition of EH(3) --> EH + H(2) becomes energetically more favorable going down the Group 13 elements, with the H(2)-abstraction of InH(3), TlH(3), and (E113)H(3) (E113: element with nuclear charge 113) being exothermic. In accordance with the Hammond-Leffler postulate, the activation barrier for the dissociation process decreases accordingly going down the group 13 elements in the periodic table shifting to an early transition state, with activation energies ranging from 88.

View Article and Find Full Text PDF

In this report we present synthetic, crystallographic, and new electron paramagnetic resonance (EPR) spectroscopic work that shows that the synthetic route leading to the recently reported, first persistent plumbyl radical *PbEbt3 (Ebt = ethylbis(trimethylsilyl)silyl), that is, the oxidation of the related PbEbt3-anion, was easily extended to the synthesis of other persistent molecular mononuclear radicals of lead and tin. At first, various novel solvates of homoleptic potassium metallates KSnHyp3 (4a), KPbHyp3 (3a), KSnEbt3 (4b), KPbIbt3 (3c), and KSnIbt3 (4c) (Hyp = tris(trimethylsilyl)silyl, Ibt = isopropylbis(trimethylsilyl)silyl), as well as some heteroleptic metallates, such as [Li(OEt2)2][Sn(n)BuHyp2] (3d), [Li(OEt2)2][Pb(n)BuHyp2] (4d), [Li(thf)4][PbPhHyp2] (3e), and [K(thf)7][PbHyp2{N(SiMe3)2}] (3f), were synthesized and crystallographically characterized. Through oxidation by tin(II) and lead(II) bis(trimethylsilyl)amides or the related 2,6-di-tert-butylphenoxides, they had been oxidized to yield in most cases the corresponding radicals.

View Article and Find Full Text PDF

Reaction of the diborane(4) B(2)(NMe(2))(2)I(2) with two equivalents of K[(eta(5)-C(5)H(5))M(CO)(3)] (M=Cr, Mo, W) yielded the dinuclear boryloxycarbyne complexes [[(eta(5)-C(5)H(5))(OC)(2)M(triple bond)CO](2)B(2)(NMe(2))(2)] (4 a, M=Mo; b, M=W; c, M=Cr), which were fully characterised in solution by multinuclear NMR methods. The Mo and W complexes 4 a, b proved to be kinetically favoured products of this reaction and underwent quantitative rearrangement in solution to afford the complexes [[(eta(5)-C(5)H(5))(OC)(2)M(triple bond)CO]B(NMe(2))B(NMe(2))[M(CO)(3)(eta(5)-C(5)H(5))]] (5 a, M=Mo; b, M=W); 5 a was characterised by X-ray crystallography in the solid state. Corresponding reactions of B(2)(NMe(2))(2)I(2) with only one equivalent of K[(eta(5)-C(5)H(5))M(CO)(3)] (M=Mo, W) initially afforded 1:1 mixtures of the boryloxycarbyne complexes 4 a, b and unconsumed B(2)(NMe(2))(2)I(2).

View Article and Find Full Text PDF

Thallium bis(trimethylsilyl)amide is a monomer in the gas phase. The molecular symmetry is C(2), the Tl-N bond length is 214.8(12) pm by gas electron diffraction as compared to about 258 pm in the crystalline dimer (Klinkhammer, K.

View Article and Find Full Text PDF

X-ray structure determinations of tetrakis(trifluoromethyl)diphosphane (2c, mp -82 degrees C, triclinic, P&onemacr;; Z = 1, a = 529.7(3) pm, b = 681.6(2) pm, c = 802.

View Article and Find Full Text PDF