Publications by authors named "Karl Kaiyala"

Botulinum neurotoxins (BoNTs) are paralytic agents used to treat a variety of conditions in jaw muscles. Although their effect is considered temporary, there are reports of persistent functional changes. Using rabbits that received BoNT injection in one masseter muscle, the recovery of neuromuscular connection was investigated using nerve stimulation to evoke an electromyographic (EMG) response, and the recovery of muscle fibers was investigated using histological morphometry and bromodeoxyuridine (BrdU) immunohistochemistry.

View Article and Find Full Text PDF

To maintain energy homeostasis during cold exposure, the increased energy demands of thermogenesis must be counterbalanced by increased energy intake. To investigate the neurobiological mechanisms underlying this cold-induced hyperphagia, we asked whether agouti-related peptide (AgRP) neurons are activated when animals are placed in a cold environment and, if so, whether this response is required for the associated hyperphagia. We report that AgRP neuron activation occurs rapidly upon acute cold exposure, as do increases of both energy expenditure and energy intake, suggesting the mere perception of cold is sufficient to engage each of these responses.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the role of perineuronal nets (PNNs) around glucoregulatory neurons in the arcuate nucleus of the hypothalamus, particularly in relation to type 2 diabetes (T2D).
  • In the Zucker diabetic fatty (ZDF) rat model, PNN abundance is significantly lower compared to healthy rats, and this reduction is linked to changes in specific sulfation patterns of chondroitin sulfate glycosaminoglycans in the mediobasal hypothalamus.
  • A single injection of fibroblast growth factor 1 (FGF1) not only replenishes PNNs but also prolongs diabetes remission, suggesting that these matrix structures play a crucial role in
View Article and Find Full Text PDF

In rodent models of type 2 diabetes (T2D), sustained remission of hyperglycemia can be induced by a single intracerebroventricular (icv) injection of fibroblast growth factor 1 (FGF1), and the mediobasal hypothalamus (MBH) was recently implicated as the brain area responsible for this effect. To better understand the cellular response to FGF1 in the MBH, we sequenced >79,000 single-cell transcriptomes from the hypothalamus of diabetic Lep mice obtained on Days 1 and 5 after icv injection of either FGF1 or vehicle. A wide range of transcriptional responses to FGF1 was observed across diverse hypothalamic cell types, with glial cell types responding much more robustly than neurons at both time points.

View Article and Find Full Text PDF

Physiological regulation is so fundamental to survival that natural selection has greatly favored the evolution of robust regulatory systems that use both reactive and preemptive responses to mitigate the disruptive impact of biological and environmental challenges on physiological function. In good health, robust regulatory systems provide little insight into the typically hidden complex array of sensor-effector interactions that accomplish successful regulation. Numerous health disorders have been traced to defective regulatory mechanisms, and generations of scientists have worked to discover ways to correct these defects and restore normal physiological function.

View Article and Find Full Text PDF

Background: Energy expenditure (EE) calculated from respirometric indirect calorimetry is most accurate when based on oxygen consumption (VO2), carbon dioxide production (VCO2) and estimated protein metabolism (PM). EE has a substantial dependence of ~7% on the respiratory quotient (RQ, VCO2/VO2) and a lesser dependence on PM, yet many studies have instead estimated EE from VO2 only while PM has often been ignored, thus reducing accuracy. In 1949 Weir proposed a method to accurately calculate EE without using RQ, which also adjusts for estimated PM based on dietary composition.

View Article and Find Full Text PDF

We recently reported that in rodent models of type 2 diabetes (T2D), a single intracerebroventricular (icv) injection of fibroblast growth factor 1 (FGF1) induces remission of hyperglycemia that is sustained for weeks. To clarify the peripheral mechanisms underlying this effect, we used the Zucker diabetic fatty / rat model of T2D, which, like human T2D, is characterized by progressive deterioration of pancreatic β-cell function after hyperglycemia onset. We report that although icv FGF1 injection delays the onset of β-cell dysfunction in these animals, it has no effect on either glucose-induced insulin secretion or insulin sensitivity.

View Article and Find Full Text PDF

The ability to maintain core temperature within a narrow range despite rapid and dramatic changes in environmental temperature is essential for the survival of free-living mammals, and growing evidence implicates an important role for the hormone leptin. Given that thyroid hormone plays a major role in thermogenesis and that circulating thyroid hormone levels are reduced in leptin-deficient states (an effect partially restored by leptin replacement), we sought to determine the extent to which leptin's role in thermogenesis is mediated by raising thyroid hormone levels. To this end, we 1) quantified the effect of physiological leptin replacement on circulating levels of thyroid hormone in leptin-deficient ob/ob mice, and 2) determined if the effect of leptin to prevent the fall in core temperature in these animals during cold exposure is mimicked by administration of a physiological replacement dose of triiodothyronine (T).

View Article and Find Full Text PDF

Background: Initial administration of ≥60% nitrous oxide (N2O) to rats evokes hypothermia, but after repeated administrations the gas instead evokes hyperthermia. This sign reversal is driven mainly by increased heat production. To determine whether rats will behaviorally oppose or assist the development of hyperthermia, we previously performed thermal gradient testing.

View Article and Find Full Text PDF

Nitrous oxide (N2O) is a gaseous drug with abuse potential. Despite its common clinical use, little is known about whether N2O administration activates the HPA axis and/or the sympathetic adrenomedullary system. The goal of this study was to determine whether 60% N2O alters plasma concentrations of corticosterone (CORT), epinephrine (EPI), and norepinephrine (NE) in male Long-Evans rats.

View Article and Find Full Text PDF

Background: Widely used as a weight loss supplement, trans-10,cis-12 conjugated linoleic acid (10,12 CLA) promotes fat loss in obese mice and humans, but has also been associated with insulin resistance.

Objective: We therefore sought to directly compare weight loss by 10,12 CLA versus caloric restriction (CR, 15-25%), an acceptable healthy method of weight loss, to determine how 10,12 CLA-mediated weight loss fails to improve glucose metabolism.

Methods: Obese mice with characteristics of human metabolic syndrome were either supplemented with 10,12 CLA or subjected to CR to promote weight loss.

View Article and Find Full Text PDF

Dynamic adjustment of insulin secretion to compensate for changes of insulin sensitivity that result from alteration of nutritional or metabolic status is a fundamental aspect of glucose homeostasis. To investigate the role of the brain in this coupling process, we used cold exposure as an experimental paradigm because the sympathetic nervous system (SNS) helps to coordinate the major shifts of tissue glucose utilization needed to ensure that increased thermogenic needs are met. We found that glucose-induced insulin secretion declined by 50% in rats housed at 5°C for 28 h, and yet, glucose tolerance did not change, owing to a doubling of insulin sensitivity.

View Article and Find Full Text PDF

Objective: To investigate the role played by leptin in thermoregulation, we studied the effects of physiological leptin replacement in leptin-deficient ob/ob mice on determinants of energy balance, thermogenesis and heat retention under 3 different ambient temperatures.

Methods: The effects of housing at 14 °C, 22 °C or 30 °C on core temperature (telemetry), energy expenditure (respirometry), thermal conductance, body composition, energy intake, and locomotor activity (beam breaks) were measured in ob/ob mice implanted subcutaneously with osmotic minipumps at a dose designed to deliver a physiological replacement dose of leptin or its vehicle-control.

Results: As expected, the hypothermic phenotype of ob/ob mice was partially rescued by administration of leptin at a dose that restores plasma levels into the physiological range.

View Article and Find Full Text PDF

Initial administration of ≥60% nitrous oxide (N2O) to rats promotes hypothermia primarily by increasing whole-body heat loss. We hypothesized that the drug promotes heat loss via the tail and might initially inhibit thermogenesis via brown adipose tissue (BAT), major organs of thermoregulation in rodents. Following repeated administrations, N2O inhalation evokes hyperthermia underlain by increased whole-body heat production.

View Article and Find Full Text PDF

Type 2 diabetes (T2D) is among the most common and costly disorders worldwide. The goal of current medical management for T2D is to transiently ameliorate hyperglycemia through daily dosing of one or more antidiabetic drugs. Hypoglycemia and weight gain are common side effects of therapy, and sustained disease remission is not obtainable with nonsurgical approaches.

View Article and Find Full Text PDF

Based largely on a number of short-term administration studies, growing evidence suggests that central oxytocin is important in the regulation of energy balance. The goal of the current work is to determine whether long-term third ventricular (3V) infusion of oxytocin into the central nervous system (CNS) is effective for obesity prevention and/or treatment in rat models. We found that chronic 3V oxytocin infusion between 21 and 26 days by osmotic minipumps both reduced weight gain associated with the progression of high-fat diet (HFD)-induced obesity and elicited a sustained reduction of fat mass with no decrease of lean mass in rats with established diet-induced obesity.

View Article and Find Full Text PDF

Objective: Central administration of ligands for fibroblast growth factor receptors (FGFRs) such as fibroblast growth factor-19 (FGF19) and FGF21 exert glucose-lowering effects in rodent models of obesity and type 2 diabetes (T2D). Conversely, intracerebroventricular (icv) administration of the non-selective FGFR inhibitor (FGFRi) PD173074 causes glucose intolerance, implying a physiological role for neuronal FGFR signaling in glucose homeostasis. The current studies were undertaken to identify neuroendocrine mechanisms underlying the glucose intolerance induced by pharmacological blockade of central FGFRs.

View Article and Find Full Text PDF

We asked whether chronic tolerance and the hyperthermic sign-reversal induced by repeated 60% NO exposures could be extinguished using a cue-exposure paradigm. Rats received 18 NO administrations in a total calorimetry system that simultaneously measures core temperature (Tc), metabolic heat production (HP), and body heat loss (HL). Each exposure entailed a 2-h baseline period followed by a 1.

View Article and Find Full Text PDF

Initial administration of 60% nitrous oxide (NO) to rats at an ambient temperature of 21°C decreases core temperature (Tc), primarily via increased heat loss (HL). Over repeated NO administrations, rats first develop tolerance to this hypothermia and subsequently exhibit hyperthermia (a sign-reversal) due primarily to progressive increases in heat production (HP). When rats initially receive 60% NO in a thermal gradient, they become hypothermic while selecting cooler ambient temperatures that facilitate HL.

View Article and Find Full Text PDF

Considerable data suggest that individuals who appear minimally disrupted during an initial drug administration have elevated risk for abusing the drug later. A better understanding of this association could lead to more effective strategies for preventing and treating drug addiction. To investigate this phenomenon using a rigorous experimental model, we first administered the abused inhalant nitrous oxide (N2O) to rats in a total calorimetry and temperature system to identify groups that were sensitive or insensitive to the drug's hypothermic effect.

View Article and Find Full Text PDF

The lean body weight phenotype of hepatic lipase (HL)-deficient mice (hl(-/-)) suggests that HL is required for normal weight gain, but the underlying mechanisms are unknown. HL plays a unique role in lipoprotein metabolism performing bridging as well as catalytic functions, either of which could participate in energy homeostasis. To determine if both the catalytic and bridging functions or the catalytic function alone are required for the effect of HL on body weight, we studied (hl(-/-)) mice that transgenically express physiologic levels of human (h)HL (with catalytic and bridging functions) or a catalytically-inactive (ci)HL variant (with bridging function only) in which the catalytic Serine 145 was mutated to Alanine.

View Article and Find Full Text PDF