Rovibrational levels of low-lying electronic states of the gas-phase, diatomic molecules, PtH+ and PtH-, are computed on potential-energy functions obtained by using a hybrid spin-orbit configuration-interaction procedure. PtH- has a well-separated Σ0++1 ground state, while the first two electronic states of PtH+ (Σ0++1 and 3Δ3) are nearly degenerate. Combining the experimental photoelectron (PE) spectra of PtH- with theoretical photodetachment spectroscopy leads to an improved value for the electron affinity of PtH, EA(PtH) = (1.
View Article and Find Full Text PDFRovibrational levels of low-lying electronic states of the diatomic molecule PtH are computed using non-relativistic wavefunction methods and a relativistic core pseudopotential. Dynamical electron correlation is treated at the coupled-cluster with single and double excitations and a perturbative estimate of triple excitations level, with basis-set extrapolation. Spin-orbit coupling is treated by configuration interaction in a basis of multireference configuration interaction states.
View Article and Find Full Text PDFSpin-orbit configuration interaction (SO-CI) and coupled-cluster [CCSDT(Q)] theoretical methods are combined to evaluate zero-temperature thermochemical properties of PtH, PtH, and PtH. We obtain vibrational zero-point energies and spin-orbit stabilization energies, which lead to predictions for observable quantities: ionization energy IE(PtH) = (9.44 ± 0.
View Article and Find Full Text PDFElectrostatic properties are important for understanding and modeling many phenomena, such as the adsorption of a catalytic metal upon an oxide support. The charge transfer between the metal and the support can lead to positive or negative charges on the metal. Here, the static dipole polarizability is computed for atomic platinum in charge states 0, +1, and -1 in several low-lying electronic terms and levels.
View Article and Find Full Text PDFGas-phase enthalpies of formation are frequently obtained from electronic-structure calculations. For a compound containing elements that are not permanent gases, experimental data are needed to connect the ab initio energies with the elements in their standard states. Usually only one chemical reaction, such as atomization, is used to make this connection.
View Article and Find Full Text PDFJ Phys Chem A
October 2017
The dissociative ionization of molecules under electron impact forms the basis for analytical mass spectrometry of volatile compounds. It is also important in other situations, notably plasmas. Although qualitative theory for mass spectrometry was developed long ago, progress toward predictive theory has been slow.
View Article and Find Full Text PDFJ Am Soc Mass Spectrom
October 2017
Collision-induced dissociation (or tandem mass spectrometry, MS/MS) of a protonated peptide results in a spectrum of fragment ions that is useful for inferring amino acid sequence. This is now commonplace and a foundation of proteomics. The underlying chemical and physical processes are believed to be those familiar from physical organic chemistry and chemical kinetics.
View Article and Find Full Text PDFPartial ionization cross sections are the absolute yields of specific ions from an electron-molecule collision. They are necessary for modeling plasmas and for determining the sensitivity of mass spectrometers, among other applications. One mass-spectrometric application is estimating the abundance of organic compounds on Mars, as sampled by the rover .
View Article and Find Full Text PDFPartial ionization cross sections are the absolute yields of specific ions from an electron-molecule collision. They are necessary for modeling plasmas and determining the sensitivity of mass spectrometers, among other applications. They can be predicted semi-empirically when experimental data are available for channel-specific oscillator strengths.
View Article and Find Full Text PDFSelf-reaction is an important sink for the hydroperoxy radical (HO2) in the atmosphere. It has been suggested (Denis, P. A.
View Article and Find Full Text PDFIn the course of investigations of thermal neutron detection based on mixtures of (10)BF3 with other gases, knowledge was required of the photoabsorption cross sections of (10)BF3 for wavelengths between 135 and 205 nm. Large discrepancies in the values reported in existing literature led to the absolute measurements reported in this communication. The measurements were made at the SURF III Synchrotron Ultraviolet Radiation Facility at the National Institute of Standards and Technology.
View Article and Find Full Text PDFRapid Commun Mass Spectrom
April 2014
Rationale: N-Alkylation of sulfonylbenzamides was reported recently to cause a dramatic and surprising change in electron ionization mass spectrometry (EIMS), leading to a closed-shell base peak. Only an incomplete, speculative mechanism was available at that time. The fragmentation mechanism is determined in the present work and set in the context of related compounds.
View Article and Find Full Text PDFJ Chem Theory Comput
February 2013
Anharmonic calculations using vibrational perturbation theory are known to provide near-spectroscopic accuracy when combined with high-level ab initio potential energy functions. However, performance with economical, popular electronic structure methods is less well characterized. We compare the accuracy of harmonic and anharmonic predictions from Hartree-Fock, second-order perturbation, and density functional theories combined with 6-31G(d) and 6-31+G(d,p) basis sets.
View Article and Find Full Text PDFJ Phys Chem A
March 2013
The explosive nitramine RDX (1,3,5-trinitrohexahydro-s-triazine) is thought to decompose largely by homolytic N-N bond cleavage, among other possible initiation reactions. Density-functional theory (DFT) calculations indicate that the resulting secondary aminyl (R2N·) radical can abstract an oxygen atom from NO2 or from a neighboring nitramine molecule, producing an aminoxyl (R2NO·) radical. Persistent aminoxyl radicals have been detected in electron-spin resonance (ESR) experiments and are consistent with autocatalytic "red oils" reported in the experimental literature.
View Article and Find Full Text PDFGas-phase thermochemistry for neutral ThF(n) and cations ThF(n)(+) (n = 1-4) is obtained from large-basis CCSD(T) calculations, with a small-core pseudopotential on thorium. Electronic partition functions are computed with the help of relativistic MRCI calculations. Geometries, vibrational spectra, electronic fine structure, and ion appearance energies are tabulated.
View Article and Find Full Text PDFJ Am Soc Mass Spectrom
March 2012
Ideal tryptic peptides contain only a single basic residue, located at the C-terminus. Collisional fragmentation of their doubly- or triply-protonated ions generates doubly-charged y(++) fragment ions with modest intensities. The size distribution of the y(++) fragments, when averaged over many spectra, corresponds closely to the expectations from charge-directed backbone cleavage and a Coulomb-Boltzmann distribution of mobile protons.
View Article and Find Full Text PDFAccording to the popular "mobile proton model" for peptide ion fragmentation in tandem mass spectrometry, peptide bond cleavage is typically preceded by intramolecular proton transfer from basic sites to an amide nitrogen in the backbone. If the intrinsic barrier to dissociation is the same for all backbone sites, the fragmentation propensity at each amide bond should reflect the stability of the corresponding N-protonated isomer. This hypothesis was tested by using ab initio and force-field computations on several polyalanines and Leu-enkephalin.
View Article and Find Full Text PDFThe use of molecular simulations and ab initio calculations to predict thermodynamic properties of molecules has become routine. Such methods rely upon an accurate representation of the molecular partition function or configurational integral, which in turn often includes a rotational symmetry number. However, the reason for including the symmetry number is unclear to many practitioners, and there is also a need for a general prescription for evaluating the symmetry numbers of flexible molecules, i.
View Article and Find Full Text PDFHildenbrand and co-workers have shown recently that the vapor above solid ammonium nitrate includes molecules of NH₄NO₃, not only NH₃ and HNO₃ as previously believed. Their measurements led to thermochemical values that imply an enthalpy change of D₂₉₈ = 98 ± 9 kJ mol⁻¹ for the gas-phase dissociation of ammonium nitrate into NH₃ and HNO₃. Using updated spectroscopic information for the partition function leads to the revised value of D₂₉₈ = 78 ± 21 kJ mol⁻¹ (accompanying paper in this journal, Hildenbrand, D.
View Article and Find Full Text PDFJ Chem Theory Comput
September 2010
To predict the vibrational spectra of molecules, ab initio calculations are often used to compute harmonic frequencies, which are usually scaled by empirical factors as an approximate correction for errors in the force constants and for anharmonic effects. Anharmonic computations of fundamental frequencies are becoming increasingly popular. We report scaling factors, along with their associated uncertainties, for anharmonic (second-order perturbation theory) predictions from HF, MP2, and B3LYP calculations using the 6-31G(d) and 6-31+G(d,p) basis sets.
View Article and Find Full Text PDFVibrational zero-point energies (ZPEs) determined from ab initio calculations are often scaled by empirical factors. An empirical scaling factor partially compensates for the effects arising from vibrational anharmonicity and incomplete treatment of electron correlation. These effects are not random but are systematic.
View Article and Find Full Text PDFAminotetrazole compounds have become attractive ingredients in gas generating compositions, solid rocket propellants, and green pyrotechnics. Therefore, a fundamental understanding of their thermal decomposition mechanisms and thermodynamics is of great interest. In this study, the specular reflection isopotential searching method was used to investigate the unimolecular decomposition mechanisms of 5-iminotetrazole (5-ITZ), 1H-5-aminotetrazole (1H-5-ATZ), and 2H-5-aminotetrazole (2H-5-ATZ).
View Article and Find Full Text PDFThe hydrocarbon in-adamantane (1), a high-energy adamantane isomer in which one methine hydrogen atom is inside the cage, is predicted by ab initio calculations to be isolable at dry ice temperature. It has 440 kJ/mol of hydrogenic strain but appears to be stable against dimerization, moisture, and air. The inverted CH bond is compressed, and the IR and NMR spectra are unusual.
View Article and Find Full Text PDFThe carbon-fluorine antibonding (sigma*) orbitals in a fluorocarbon cage are directed toward a central, common point. If the cage is not too large or too small, then the sigma* orbitals will overlap at that point. An added electron can occupy the resulting molecular orbital, suggesting that cage perfluorocarbons will have large electron affinities.
View Article and Find Full Text PDFSudden ozone depletion events in the marine boundary layer are associated with jumps in the CH3Br mixing ratio, but current models of atmospheric chemistry explain neither the ozone depletion nor the CH3Br spikes. We have used ab initio theory to predict the forward and reverse rate constants for the competing hydrogen abstraction and homolytic substitution (SH2) channels of the title reactions. Including the spin-orbit stabilization of the transition structures increases the rate constants by factors between 1.
View Article and Find Full Text PDF