Publications by authors named "Karl Joulain"

We propose a simple structure for passive sky radiative cooling made of a surface-textured layer of silica on a silver substrate. Using electromagnetic simulations, we show that the optical properties of such structures are near-ideal, due to the large reflectivity of silver in the solar spectrum and the large emissivity of silica in the infrared. Surface texturation is key to obtain near-unity emissivity in the infrared.

View Article and Find Full Text PDF

Based on the thermal hysteresis of a phase change material exchanging radiative heat with a phase invariable one, we propose a radiative thermal memristor characterized by a Lissajous curve between their exchanged heat flux and temperature difference periodically modulated in time. For a memristor with terminals of VO_{2} and a blackbody, it is shown that (i) the temperature variations of its memristance follow a closed loop determined by the thermal hysteresis width of VO_{2}, and (ii) the thermal memristance on-off ratio is determined by the contrast of VO_{2} emissivities for its insulating and metallic phases and is equal to 3.6.

View Article and Find Full Text PDF

Hysteresis loops exhibited by the thermophysical properties of VO thin films deposited on either a sapphire or silicon substrate have been experimentally measured using a high frequency photothermal radiometry technique. This is achieved by directly measuring the thermal diffusivity and thermal effusivity of the VO films during their heating and cooling across their phase transitions, along with the film-substrate interface thermal boundary resistance. These thermal properties are then used to determine the thermal conductivity and volumetric heat capacity of the VO films.

View Article and Find Full Text PDF

Based on the ability of plane structures to simultaneously optimize the propagation, confinement, and energy of surface plasmon-polaritons or surface phonon-polaritons, we develop the polaritonic figure of merit Z = βRΛ/δ, where βR, Λ and δ are the longitudinal wave vector, propagation length, and penetration depth, respectively. Explicit and analytical expressions of Z are derived for a single interface and a suspended thin film, as functions of the material permittivities and the film thickness. Higher Z are obtained for thinner films and smaller energy losses.

View Article and Find Full Text PDF

We demonstrate that two interacting spinlike systems characterized by different excitation frequencies and coupled to a thermal bath each, can be used as a quantum thermal diode capable of efficiently rectifying the heat current. This is done by deriving analytical expressions for both the heat current and rectification factor of the diode, based on the solution of a master equation for the density matrix. Higher rectification factors are obtained for lower heat currents, whose magnitude takes their maximum values for a given interaction coupling proportional to the temperature of the hotter thermal bath.

View Article and Find Full Text PDF

We demonstrate that a thermal transistor can be made up with a quantum system of three interacting subsystems, coupled to a thermal reservoir each. This thermal transistor is analogous to an electronic bipolar one with the ability to control the thermal currents at the collector and at the emitter with the imposed thermal current at the base. This is achieved by determining the heat fluxes by means of the strong-coupling formalism.

View Article and Find Full Text PDF

We review recent advances in the fundamental understanding and technological applications of radiative processes for energy harvesting, conversion, efficiency, and sustainability. State-of-the-art and remaining challenges are discussed, together with the latest developments outlined in the papers comprising this focus issue. The topics range from the fundamentals of the thermal emission manipulation in the far and near field, to applications in radiative cooling, thermophotovoltaics, thermal rectification, and novel approaches to photon detection and conversion.

View Article and Find Full Text PDF

By means of fluctuational electrodynamics, we calculate radiative heat flux between two planar materials respectively made of SiC and SiO2. More specifically, we focus on a first (direct) situation where one of the two materials (for example SiC) is at ambient temperature whereas the second material is at a higher one, then we study a second (reverse) situation where the material temperatures are inverted. When the two fluxes corresponding to the two situations are different, the materials are said to exhibit thermal rectification, a property with potential applications in thermal regulation.

View Article and Find Full Text PDF

The heat transport mediated by near-field interactions in networks of plasmonic nanostructures is shown to be analogous to a generalized random walk process. The existence of superdiffusive regimes is demonstrated both in linear ordered chains and in three-dimensional random networks by analyzing the asymptotic behavior of the corresponding probability distribution function. We show that the spread of heat in these networks is described by a type of Lévy flight.

View Article and Find Full Text PDF

We report local spectra of the near-field thermal emission recorded by a Fourier transform infrared spectrometer, using a tungsten tip as a local scatterer coupling the near-field thermal emission to the far field. Spectra recorded on silicon carbide and silicon dioxide exhibit temporal coherence due to thermally excited surface waves. Finally, we evaluate the ability of this spectroscopy to probe the frequency dependence of the electromagnetic local density of states.

View Article and Find Full Text PDF

In this Letter, an N-body theory for the radiative heat exchange in thermally nonequilibrated discrete systems of finite size objects is presented. We report strong exaltation effects of heat flux which can be explained only by taking into account the presence of many-body interactions. Our theory extends the standard Polder and van Hove stochastic formalism used to evaluate heat exchanges between two objects isolated from their environment to a collection of objects in mutual interaction.

View Article and Find Full Text PDF

In standard near-field scanning optical microscopy (NSOM), a subwavelength probe acts as an optical 'stethoscope' to map the near field produced at the sample surface by external illumination. This technique has been applied using visible, infrared, terahertz and gigahertz radiation to illuminate the sample, providing a resolution well beyond the diffraction limit. NSOM is well suited to study surface waves such as surface plasmons or surface-phonon polaritons.

View Article and Find Full Text PDF

We introduce a thermal conductance by using the fluctuation-dissipation theorem to analyze the heat transfer between two nanoparticles separated by a submicron distance. Using either a molecular dynamics technique or a model based on the Coulomb interaction between fluctuating dipoles, we derive the thermal conductance. Both models agree for distances larger than a few diameters.

View Article and Find Full Text PDF

A thermal light-emitting source, such as a black body or the incandescent filament of a light bulb, is often presented as a typical example of an incoherent source and is in marked contrast to a laser. Whereas a laser is highly monochromatic and very directional, a thermal source has a broad spectrum and is usually quasi-isotropic. However, as is the case with many systems, different behaviour can be expected on a microscopic scale.

View Article and Find Full Text PDF