LINGO-1 is a membrane protein of the central nervous system (CNS) that suppresses myelination of axons. Preclinical studies have revealed that blockade of LINGO-1 function leads to CNS repair in demyelinating animal models. The anti-LINGO-1 antibody Li81 (opicinumab), which blocks LINGO-1 function and shows robust remyelinating activity in animal models, is currently being investigated in a Phase 2 clinical trial as a potential treatment for individuals with relapsing forms of multiple sclerosis (AFFINITY: clinical trial.
View Article and Find Full Text PDFAntibodies are key components of the adaptive immune system and are well-established protein therapeutic agents. Typically high-affinity antibodies are obtained by immunization of rodent species that need to be humanized to reduce their immunogenicity. The complementarity-determining regions (CDRs) contain the residues in a defined loop structure that confer antigen binding, which must be retained in the humanized antibody.
View Article and Find Full Text PDFMethods Mol Biol
December 2012
Proteins, especially antibodies, are widely used as therapeutic and diagnostic agents. Computational protein design is a powerful tool for improving the affinity and stability of these molecules. We describe a protein design method which employs the dead-end elimination (DEE) and A* discrete search algorithms with a few improvements aimed at making the procedure more useful for actual projects to design proteins for better affinity or stability.
View Article and Find Full Text PDFImproving the affinity of a high-affinity protein-protein interaction is a challenging problem that has practical applications in the development of therapeutic biomolecules. We used a combination of structure-based computational methods to optimize the binding affinity of an antibody fragment to the I-domain of the integrin VLA1. Despite the already high affinity of the antibody (Kd approximately 7 nM) and the moderate resolution (2.
View Article and Find Full Text PDF