Publications by authors named "Karl Glastad"

Social insects offer powerful models to investigate the mechanistic foundation of elaborate individual behaviors comprising a cooperative community. Workers of the leafcutter ant genus provide an extreme example of behavioral segregation among many phenotypically distinct worker types. We utilize the complex worker system of to test the molecular underpinnings of behavioral programming and, in particular, the extent of plasticity to reprogramming.

View Article and Find Full Text PDF

Metabolic control of chromatin and gene expression is emerging as a key, but largely unexplored aspect of gene regulation. In the brain, metabolic-epigenetic interactions can influence critical neuronal functions. Here, we use a combination of behavioral, proteomic and genomic approaches to demonstrate that the intermediary metabolite acetate enhances memory in a brain region- and sex-specific manner.

View Article and Find Full Text PDF

Here, we reveal an unanticipated role of the blood-brain barrier (BBB) in regulating complex social behavior in ants. Using scRNA-seq, we find localization in the BBB of a key hormone-degrading enzyme called juvenile hormone esterase (Jhe), and we show that this localization governs the level of juvenile hormone (JH3) entering the brain. Manipulation of the Jhe level reprograms the brain transcriptome between ant castes.

View Article and Find Full Text PDF
Article Synopsis
  • * Gamergates exhibit higher expression of heat shock response (HSR) genes without needing heat stress, which contributes to their increased lifespan and survival under heat stress conditions.
  • * The elevated hsalHSF2 gene in gamergates plays a crucial role in their longevity and heat resilience and shows similarities with mechanisms in long-lived flies, emphasizing the importance of protein maintenance in aging.
View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged at the end of 2019 and caused the devastating global pandemic of coronavirus disease 2019 (COVID-19), in part because of its ability to effectively suppress host cell responses. In rare cases, viral proteins dampen antiviral responses by mimicking critical regions of human histone proteins, particularly those containing post-translational modifications required for transcriptional regulation. Recent work has demonstrated that SARS-CoV-2 markedly disrupts host cell epigenetic regulation.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR) T cell therapy has achieved remarkable success in hematological malignancies but remains ineffective in solid tumors, due in part to CAR T cell exhaustion in the solid tumor microenvironment. To study dysfunction of mesothelin-redirected CAR T cells in pancreatic cancer, we establish a robust model of continuous antigen exposure that recapitulates hallmark features of T cell exhaustion and discover, both in vitro and in CAR T cell patients, that CAR dysregulation is associated with a CD8+ T-to-NK-like T cell transition. Furthermore, we identify a gene signature defining CAR and TCR dysregulation and transcription factors, including SOX4 and ID3 as key regulators of CAR T cell exhaustion.

View Article and Find Full Text PDF

Behavioral plasticity is key to animal survival. Harpegnathos saltator ants can switch between worker and queen-like status (gamergate) depending on the outcome of social conflicts, providing an opportunity to study how distinct behavioral states are achieved in adult brains. Using social and molecular manipulations in live ants and ant neuronal cultures, we show that ecdysone and juvenile hormone drive molecular and functional differences in the brains of workers and gamergates and direct the transcriptional repressor Kr-h1 to different target genes.

View Article and Find Full Text PDF

A key question in the rising field of neuroepigenetics is how behavioral plasticity is established and maintained in the developing CNS of multicellular organisms. Behavior is controlled through systemic changes in hormonal signaling, cell-specific regulation of gene expression, and changes in neuronal connections in the nervous system, however the link between these pathways is unclear. In the ant Camponotus floridanus, the epigenetic corepressor CoREST is a central player in experimentally-induced reprogramming of caste-specific behavior, from soldier (Major worker) to forager (Minor worker).

View Article and Find Full Text PDF

In social insects, workers and queens arise from the same genome but display profound differences in behavior and longevity. In ants, adult workers can transition to a queen-like state called gamergate, which results in reprogramming of social behavior and life-span extension. Using single-cell RNA sequencing, we compared the distribution of neuronal and glial populations before and after the social transition.

View Article and Find Full Text PDF
Article Synopsis
  • Arthropods are the largest and most diverse group of animals on Earth, with their diversity linked to genomic adaptations that have evolved over time.
  • The study analyzes 76 whole genome sequences from various arthropod orders, revealing changes in gene content and novel gene families that correlate with significant evolutionary developments, including traits like flight and metamorphosis.
  • The findings highlight the importance of comparative genomics in understanding how genetic changes translate into physical traits, offering new perspectives on the evolution of animal diversity.
View Article and Find Full Text PDF

Ants acquire distinct morphological and behavioral phenotypes arising from a common genome, underscoring the importance of epigenetic regulation. In Camponotus floridanus, "Major" workers defend the colony, but can be epigenetically reprogrammed to forage for food analogously to "Minor" workers. Here, we utilize reprogramming to investigate natural behavioral specification.

View Article and Find Full Text PDF

The study of the major transition to eusociality presents several challenges to researchers, largely resulting from the importance of complex behavioral phenotypes and the shift from individual to group level selection. These challenges are being met with corresponding technological improvements. Advances in resource development for non-model taxa, behavioral tracking, nucleic acid sequencing, and reverse genetics are facilitating studies of hypotheses that were previously intractable.

View Article and Find Full Text PDF

Epigenetic inheritance is fundamentally important to cellular differentiation and developmental plasticity. In this review, we provide an introduction to the field of molecular epigenetics in insects. Epigenetic information is passed across cell divisions through the methylation of DNA, the modification of histone proteins, and the activity of noncoding RNAs.

View Article and Find Full Text PDF

Despite a strong history of theoretical work on the mechanisms of social evolution, relatively little is known of the molecular genetic changes that accompany transitions from solitary to eusocial forms. Here, we provide the first genome of an incipiently social bee that shows both solitary and social colony organization in sympatry, the Australian carpenter bee Ceratina australensis. Through comparative analysis, we provide support for the role of conserved genes and cis-regulation of gene expression in the phenotypic plasticity observed in nest-sharing, a rudimentary form of sociality.

View Article and Find Full Text PDF
Article Synopsis
  • Hyalella azteca is a crustacean used in North America for sediment toxicity testing and serves as a model for studying ecotoxicology.
  • Researchers sequenced the genome of H. azteca to create molecular resources for assessing sediment quality and to explore evolutionary biology.
  • The study identified significant gene expansions related to detoxification and sensory adaptation in low light environments, enhancing understanding of how these organisms respond to environmental stressors and toxins.
View Article and Find Full Text PDF

Changes in gene regulation that underlie phenotypic evolution can be encoded directly in the DNA sequence or mediated by chromatin modifications such as DNA methylation. It has been hypothesized that the evolution of eusocial division of labor is associated with enhanced gene regulatory potential, which may include expansions in DNA methylation in the genomes of Hymenoptera (bees, ants, wasps, and sawflies). Recently, this hypothesis garnered support from analyses of a commonly used metric to estimate DNA methylation in silico, CpG content.

View Article and Find Full Text PDF

Social insects are emerging models to study how gene regulation affects behavior because their colonies comprise individuals with the same genomes but greatly different behavioral repertoires. To investigate the molecular mechanisms that activate distinct behaviors in different castes, we exploit a natural behavioral plasticity in Harpegnathos saltator, where adult workers can transition to a reproductive, queen-like state called gamergate. Analysis of brain transcriptomes during the transition reveals that corazonin, a neuropeptide homologous to the vertebrate gonadotropin-releasing hormone, is downregulated as workers become gamergates.

View Article and Find Full Text PDF

Epigenetic inheritance plays an important role in mediating alternative phenotype in highly social species. In order to gain a greater understanding of epigenetic effects in societies, we investigated DNA methylation in the termite Zootermopsis nevadensis. Termites are the most ancient social insects, and developmentally distinct from highly-studied, hymenopteran social insects.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers explored the genomic basis of wood-feeding in the Asian longhorned beetle, a major invasive species, through genome sequencing, gene expression studies, and enzyme analyses.
  • The study found that this beetle has a unique set of enzymes that enables it to degrade plant cell walls and detoxify chemicals, contributing to its ability to feed on various woody plants.
  • It was concluded that the expansion and specialization of certain genes, including those acquired from fungi and bacteria, play a crucial role in the evolutionary success of wood-feeding beetles and their ability to adapt to different plant species.
View Article and Find Full Text PDF

Understanding the evolution of animal societies, considered to be a major transition in evolution, is a key topic in evolutionary biology. Recently, new gateways for understanding social evolution have opened up due to advances in genomics, allowing for unprecedented opportunities in studying social behavior on a molecular level. In particular, highly eusocial insect species (caste-containing societies with nonreproductives that care for siblings) have taken center stage in studies of the molecular evolution of sociality.

View Article and Find Full Text PDF

Comparative genomics of social insects has been intensely pursued in recent years with the goal of providing insights into the evolution of social behaviour and its underlying genomic and epigenomic basis. However, the comparative approach has been hampered by a paucity of data on some of the most informative social forms (e.g.

View Article and Find Full Text PDF

Epigenetic information is widely appreciated for its role in gene regulation in eukaryotic organisms. However, epigenetic information can also influence genome evolution. Here, we investigate the effects of epigenetic information on gene sequence evolution in two disparate insects: the fly Drosophila melanogaster, which lacks substantial DNA methylation, and the ant Camponotus floridanus, which possesses a functional DNA methylation system.

View Article and Find Full Text PDF