Publications by authors named "Karl G Wagner"

This work presents a novel approach to select gravimetric dosing configurations for continuous unit operations in pharmaceutical processing. It optimizes material, time, and personnel use, and allows selections for configurations of materials not included in the model by robust material attribute-based interpolation. The approach does not apply Principal Component Analysis (PCA) and Partial Least Squares (PLS).

View Article and Find Full Text PDF

Mesoporous silica offers an easy way to transform liquids into solids, due to their high loading capacity for liquid or dissolved active ingredients and the resulting enhanced dissolution properties. However, the compression of both unloaded and loaded mesoporous silica bulk material into tablets is challenging, due to poor/non-existing binding capacity. This becomes critical when high drug loads are to be achieved and the fraction of additional excipients in the final tablet formulation needs to be kept at a minimum.

View Article and Find Full Text PDF

The success of obtaining solid dispersions for solubility improvement invariably depends on the miscibility of the drug and polymeric carriers. This study aimed to categorize and select polymeric carriers via the classical group contribution method using the multivariate analysis of the calculated solubility parameter of RX-HCl. The total, partial, and derivate parameters for RX-HCl were calculated.

View Article and Find Full Text PDF

Fused deposition modeling (FDM) is a rather new technology in the production of personalized dosage forms. The melting and printing of polymer-active pharmaceutical ingredient (API)-mixtures can be used to produce oral dosage forms with different dosage as well as release behavior. This process is utilized to increase the bioavailability of pharmaceutically relevant active ingredients that are poorly soluble in physiological medium by transforming them into solid amorphous dispersions (ASD).

View Article and Find Full Text PDF

Toxicological studies are a part of the drug development process and the preclinical stages, for which suitable vehicles ensuring easy and safe administration are crucial. However, poor aqueous solubility of drugs complicates vehicle screening for oral administration since non-aqueous solvents are often not tolerable. In the case of the anti-infective corallopyronin A, currently undergoing preclinical investigation for filarial nematode and bacterial infections, commonly used vehicles such as polyethylene glycol 200, aqueous solutions combined with cosolvents or solubilizers, or aqueous suspension have failed due to insufficient tolerability, solubility, or the generation of a non-homogeneous suspension.

View Article and Find Full Text PDF

Loading poorly soluble active pharmaceutical ingredients (API) into mesoporous silica can enable API stabilization in non-crystalline form, which leads to improved dissolution. This is particularly beneficial for highly lipophilic APIs (log D > 8) as these drugs often exhibit limited solubility in dispersion forming carrier polymers, resulting in low drug load and reduced solid state stability. To overcome this challenge, we loaded the highly lipophilic natural products coenzyme Q10 (CoQ10) and astaxanthin (ASX), as well as the synthetic APIs probucol (PB) and lumefantrine (LU) into the mesoporous silica carriers Syloid® XDP 3050 and Silsol® 6035.

View Article and Find Full Text PDF

As performance of ternary amorphous solid dispersions (ASDs) depends on the solid-state characteristics and polymer mixing, a comprehensive understanding of synergistic interactions between the polymers in regard of dissolution enhancement of poorly soluble drugs and subsequent supersaturation stabilization is necessary. By choosing hot-melt extrusion (HME) and vacuum compression molding (VCM) as preparation techniques, we manipulated the phase behavior of ternary efavirenz (EFV) ASDs, comprising of either hydroxypropyl cellulose (HPC)-SSL or HPC-UL in combination with Eudragit® L 100-55 (EL 100-55) (50:50 polymer ratio), leading to single-phased (HME) and heterogeneous ASDs (VCM). Due to higher kinetic solid-state solubility of EFV in HPC polymers compared to EL 100-55, we visualized higher drug distribution into HPC-rich phases of the phase-separated ternary VCM ASDs via confocal Raman microscopy.

View Article and Find Full Text PDF

Coupling biorelevant in vitro dissolution with in silico physiological-based pharmacokinetic (PBPK) tools represents a promising method to describe and predict the in vivo performance of drug candidates in formulation development including non-passive transport, prodrug activation, and first-pass metabolism. The objective of the present study was to assess the predictability of human pharmacokinetics by using biphasic dissolution results obtained with the previously established BiPHa+ assay and PBPK tools. For six commercial drug products, formulated by different enabling technologies, the respective organic partitioning profiles were processed with two PBPK in silico modeling tools, namely PK-Sim and GastroPlus, similar to extended-release dissolution profiles.

View Article and Find Full Text PDF
Article Synopsis
  • Understanding the generation and effects of thermomechanical stress during small-scale melt-extrusion is essential for ensuring the stability of protein particles like lysozyme and BSA in PEG matrices.
  • The study compared both experimental and numerical methods to analyze how different extrusion designs impact protein stability, finding that continuous screw extrusion (TSE) leads to more protein degradation compared to ram extrusion.
  • Results indicated that ram extrusion caused less damage to protein stability, making it the preferred method for producing stable protein-loaded extrudates in small-scale applications.
View Article and Find Full Text PDF

Spray drying is one of the most frequently used solvent-based processes for manufacturing amorphous solid dispersions (ASDs). However, the resulting fine powders usually require further downstream processing when intended for solid oral dosage forms. In this study, we compare properties and performance of spray-dried ASDs with ASDs coated onto neutral starter pellets in mini-scale.

View Article and Find Full Text PDF

Hot-melt extrusion (HME) is used for the production of solid protein formulations mainly for two reasons: increased protein stability in solid state and/or long-term release systems (e.g., protein-loaded implants).

View Article and Find Full Text PDF

The continuous manufacturing (CM) of solid oral dosage forms has received increased attention in recent years and has become a leading technology in the pharmaceutical industry. A model has been developed based on process data from two design of experiments (DoEs), where the impact of the mixer process parameters, throughput (THR), hold up mass (HUM), impeller speed (IMP), and the input raw material bulk density (BD), on the continuous process and the resulting drug product has been investigated. These statistical models revealed equations, describing process parameter interactions for optimization purposes.

View Article and Find Full Text PDF

PROteolysis TArgeting Chimaeras (PROTACs) offer new opportunities in modern medicine by targeting proteins that are undruggable to classic inhibitors. However, due to their hydrophobic structure, PROTACs typically suffer from low solubility, and oral bioavailability remains challenging. At the same time, due to their investigative state, the drug supply is meager, leading to limited possibilities in terms of formulation development.

View Article and Find Full Text PDF

Methicillin-resistant Staphylococcus aureus (MRSA) is a World Health Organization’s high priority pathogen organism, with an estimated > 100,000 deaths worldwide in 2019. Thus, there is an unmet medical need for novel and resistance-breaking anti-infectives. The natural product Co-rallopyronin A (CorA), currently in preclinical development for filariasis, is efficacious against MRSA in vitro.

View Article and Find Full Text PDF

As protein-based therapeutics often exhibit a limited stability in liquid formulations, there is a growing interest in the development of solid protein formulations due to improved protein stability in the solid state. We used small-scale (<3 g) ram and twin-screw extrusion for the solid stabilization of proteins (Lysozyme, BSA, and human insulin) in PEG-matrices. Protein stability after extrusion was systematically investigated using ss-DSC, ss-FTIR, CD spectroscopy, SEM-EDX, SEC, RP-HPLC, and in case of Lysozyme an activity assay.

View Article and Find Full Text PDF

It is recognised that paediatric indications and age-appropriate formulations are required to ensure that paediatric populations receive appropriate pharmacotherapeutic treatment. The lack of information on dosing, efficacy and safety data (labelling) is a well-recognised problem for all diseases affecting children. For neglected tropical diseases, the fact that they affect to a large extent poor and marginalised populations in low- and middle-income countries means that there is a low economic return on investment into paediatric development activities compared to other diseases [e.

View Article and Find Full Text PDF

Structural and functional integrities of formulated proteins are key characteristics that provide a better understanding of influencing factors and their adjustment during formulation development. Here, the procedures commonly used for protein analysis were applied and optimized to obtain a higher degree of accuracy, reproducibility, and reliability for the analysis of lysozyme extracts from hot-melt extrudates (HME). The extrudates were prepared with polyethylene glycol 20 000.

View Article and Find Full Text PDF

In vivo studies in mice provide a valuable model to test novel active pharmaceutical ingredients due to their low material need and the fact that mice are frequently used as a species for early efficacy models. However, preclinical in vitro evaluations of formulation principles in mice are still lacking. The development of novel in vitro and in silico models supported the preclinical formulation evaluation for the anti-infective corallopyronin A (CorA).

View Article and Find Full Text PDF

Nanocrystal suspensions proved to be a potent enabling principle for biopharmaceutics classification system class II drugs with dissolution limited bioavailability. In the example of itraconazole (ITZ) as a model drug combined with electrosteric stabilization using hydroxypropyl cellulose (HPC-SL), sodium dodecyl sulfate (SDS) and polysorbate 80 (PS80), the impacts of formulation and process parameters of a dual centrifugal mill on material attributes such as particle size, zeta potential, particle morphology, storage stability and especially solid-state characteristics were evaluated. A minimal concentration of 0.

View Article and Find Full Text PDF

Process simulation facilitates scale-up of hot-melt extrusion (HME) and enhances proper understanding of the underlying critical process parameters. However, performing numeric simulations requires profound knowledge of the employed materials' properties. For example, an accurate description of the compounds' melt rheology is paramount for proper simulations.

View Article and Find Full Text PDF

Covering: August 1984 up to January 2022Worldwide, increasing morbidity and mortality due to antibiotic-resistant microbial infections has been observed. Therefore, better prevention and control of infectious diseases, as well as appropriate use of approved antibacterial drugs are crucial. There is also an urgent need for the continuous development and supply of novel antibiotics.

View Article and Find Full Text PDF

The present study focuses on the compaction behavior of polymeric excipients during compression in comparison to nonpolymeric excipients and its consequences on commonly used Heckel analysis. Compression analysis at compaction pressures (CPs) from 50 to 500 MPa was performed using a compaction simulator. This study demonstrates that the particle density, measured via helium pycnometer (ρpar), of polymeric excipients (Kollidon®VA64, Soluplus®, AQOAT®AS-MMP, Starch1500®, Avicel®PH101) was already exceeded at low CPs (<200 MPa), whereas the ρpar was either never reached for brittle fillers such as DI-CAFOS®A60 and tricalcium citrate or exceeded at CPs above 350 MPa (FlowLac®100, Pearlitol®100SD).

View Article and Find Full Text PDF

The present study explored vacuum drum drying (VDD) as potential drying technique for the solidification of crystalline ritonavir nanosuspensions prepared by wet-ball milling. In detail, the impact of drying protectants (mannitol, lactose, trehalose) added to the ritonavir nanosuspension was assessed in dependence of the drum temperature with respect to processibility via VDD, resulting intermediate powder properties, remaining nanoparticulate redispersibility and crystallinity. A clear impact of the glass transition temperature (T) of the drying protectant on the redispersibility/crystallinity of the VDD intermediate was observed.

View Article and Find Full Text PDF

A current trend in the development of amorphous solid dispersions (ASDs) is the combination of two polymers for synergistic enhancement in supersaturation of poorly soluble drugs. We investigated the supersaturation potential of celecoxib (CXB) using combinations of methacrylic acid-ethyl acrylate copolymer (1:1) (EL 100-55) and hydroxypropyl cellulose (HPC) SSL. Initially, the supersaturation potential of single polymers and combinations in various ratios was assessed.

View Article and Find Full Text PDF

The continuous manufacturing of solid oral-dosage forms represents an emerging technology among the pharmaceutical industry, where several process steps are combined in one production line. As all mixture components, including the lubricant (magnesium stearate), are passing simultaneously through one blender, an impact on the subsequent process steps and critical product properties, such as content uniformity and tablet tensile strength, is to be expected. A design of experiment (DoE) was performed to investigate the impact of the blender variables hold-up mass (HUM), impeller speed (IMP) and throughput (THR) on the mixing step and the subsequent continuous manufacturing process steps.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session7q2rkefhh2vdf4aok8o7a226lo8ahs4p): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once