Publications by authors named "Karl G Johannes"

Micropatterned surfaces exhibit enhanced shear traction on soft, aqueous tissue-like materials and, thus, have the potential to advance medical technology by improving the anchoring performance of medical devices on tissue. However, the fundamental mechanism underlying the enhanced shear traction is still elusive, as previous studies focused on interactions between micropatterned surfaces and rigid substrates rather than soft substrates. Here, we present a particle tracking method to experimentally measure microscale three-dimensional (3D) deformation of a soft hydrogel in normal and shear contact with arrays of microscale pillars.

View Article and Find Full Text PDF

Understanding the contact and friction between soft materials is vital to a wide variety of engineering applications including soft sealants and medical devices such as catheters and stents. Although the mechanisms of friction between stiff materials have been extensively studied, the mechanisms of friction between soft materials are much less understood. Time-dependent material responses, large deformations, and fluid layers at the contact interface, common in soft materials, pose new challenges toward understanding the friction between soft materials.

View Article and Find Full Text PDF