Publications by authors named "Karl F Freed"

Predicting protein binding is a core problem of computational biophysics. That this objective can be partly achieved with some amount of success using docking algorithms based on rigid protein models is remarkable, although going further requires allowing for protein flexibility. However, accurately capturing the conformational changes upon binding remains an enduring challenge for docking algorithms.

View Article and Find Full Text PDF
Article Synopsis
  • The study highlights how combining hydrogen-deuterium exchange (HDX) and molecular dynamics (MD) techniques can improve our understanding of protein stability and H-bond dynamics at an atomic level.
  • By utilizing a new, fast MD package trained with machine-learning methods, researchers achieved better accuracy in simulating both native and denatured protein states.
  • While the results showed significant improvements, some discrepancies remained, emphasizing the challenges in accurately modeling the free energy landscape of proteins.
View Article and Find Full Text PDF

Single-molecule force spectroscopy has proven extremely beneficial in elucidating folding pathways for membrane proteins. Here, we simulate these measurements, conducting hundreds of unfolding trajectories using our fast Upside algorithm for slow enough speeds to reproduce key experimental features that may be missed using all-atom methods. The speed also enables us to determine the logarithmic dependence of pulling velocities on the rupture levels to better compare to experimental values.

View Article and Find Full Text PDF

Most theories of the binding of molecules to surfaces or for the association between molecules treat the binding species as structureless entities and neglect their rigidity and the changes in their stiffness induced by the binding process. The binding species are also taken to be "ideal," meaning that the existence of van der Waals interactions and changes in these interactions upon molecular binding are also neglected. An understanding of the thermodynamics of these multifunctional molecular binding processes has recently come into focus in the context of the molecular binding of complex molecules, such as dendrimers and DNA grafted nanoparticles, to surfaces where the degree of binding cooperativity and selectivity, as well as the location of the binding transition, are found to be sensitive to the number of binding units constrained to a larger scale polymeric scaffold.

View Article and Find Full Text PDF

To address the large gap between time scales that can be easily reached by molecular simulations and those required to understand protein dynamics, we present a rapid self-consistent approximation of the side chain free energy at every integration step. In analogy with the adiabatic Born-Oppenheimer approximation for electronic structure, the protein backbone dynamics are simulated as preceding according to the dictates of the free energy of an instantaneously-equilibrated side chain potential. The side chain free energy is computed on the fly, allowing the protein backbone dynamics to traverse a greatly smoothed energetic landscape.

View Article and Find Full Text PDF

An ongoing challenge in protein chemistry is to identify the underlying interaction energies that capture protein dynamics. The traditional trade-off in biomolecular simulation between accuracy and computational efficiency is predicated on the assumption that detailed force fields are typically well-parameterized, obtaining a significant fraction of possible accuracy. We re-examine this trade-off in the more realistic regime in which parameterization is a greater source of error than the level of detail in the force field.

View Article and Find Full Text PDF

We use the statistics of a large and curated training set of transmembrane helical proteins to develop a knowledge-based potential that accounts for the dependence on both the depth of burial of the protein in the membrane and the degree of side-chain exposure. Additionally, the statistical potential includes depth-dependent energies for unsatisfied backbone hydrogen bond donors and acceptors, which are found to be relatively small, ∼2 RT. Our potential accurately places known proteins within the bilayer.

View Article and Find Full Text PDF

The dielectric virial expansion is developed for composite systems with embedded interacting dielectric dipolar spheres. Introducing a multiple-scattering expansion for the polarization energy in the presence of an external field enables the derivation of a virial expansion for the polarizability. Substituting the polarizability into the Clausius-Mossotti relation yields the virial series for the effective medium permittivity.

View Article and Find Full Text PDF

Best claim that we provide no convincing basis to assert that a discrepancy remains between FRET and SAXS results on the dimensions of disordered proteins under physiological conditions. We maintain that a clear discrepancy is apparent in our and other recent publications, including results shown in the Best comment. A plausible origin is fluorophore interactions in FRET experiments.

View Article and Find Full Text PDF

The reversible binding of molecules to surfaces is one of the most fundamental processes in condensed fluids, with obvious applications in the molecular separation of materials, chromatographic characterization, and material processing. Motivated in particular by the ubiquitous occurrence of binding processes in molecular biology and self-assembly, we have developed a lattice type theory of competitive molecular binding to solid substrates from binary mixtures of two small molecule liquids that interact between themselves by van der Waals forces in addition to exhibiting binding interactions with the solid surface. The derived theory, in contrast to previously existing theoretical frameworks, enables us to investigate the influence of van der Waals interactions on interfacial binding and selective molecular adsorption.

View Article and Find Full Text PDF

A substantial fraction of the proteome is intrinsically disordered, and even well-folded proteins adopt non-native geometries during synthesis, folding, transport, and turnover. Characterization of intrinsically disordered proteins (IDPs) is challenging, in part because of a lack of accurate physical models and the difficulty of interpreting experimental results. We have developed a general method to extract the dimensions and solvent quality (self-interactions) of IDPs from a single small-angle x-ray scattering measurement.

View Article and Find Full Text PDF

The multiple-scattering theory for the electrostatics of many-body systems of monopolar spherical particles, embedded in a dielectric medium, is generalized to describe the electrostatics of these particles with embedded dipoles and multipoles. The Neumann image line construction for the electrostatic polarization produced by one particle is generalized to compute the energy, forces, and torques for the many-body system as functions of the positions of the particles. The approach is validated by comparison with direct numerical calculation, and the convergence rate is analyzed and expressed in terms of the discontinuity in dielectric contrast and particle density.

View Article and Find Full Text PDF

The theoretical description of the phase behavior of polymers dissolved in binary mixtures of water and other miscible solvents is greatly complicated by the self- and mutual-association of the solvent molecules. As a first step in treating these complex and widely encountered solutions, we have developed an extension of Flory-Huggins theory to describe mixtures of two self- and mutually-associating fluids comprised of small molecules. Analytic expressions are derived here for basic thermodynamic properties of these fluid mixtures, including the spinodal phase boundaries, the second osmotic virial coefficients, and the enthalpy and entropy of mixing these associating solvents.

View Article and Find Full Text PDF

Molecular dynamics simulations of ubiquitin in water/glycerol solutions are used to test the suggestion by Karplus and coworkers that proteins in their biologically active state should exhibit a dynamics similar to 'surface-melted' inorganic nanoparticles (NPs). Motivated by recent studies indicating that surface-melted inorganic NPs are in a 'glassy' state that is an intermediate dynamical state between a solid and liquid, we probe the validity and significance of this proposed analogy. In particular, atomistic simulations of ubiquitin in solution based on CHARMM36 force field and pre-melted Ni NPs (Voter-Chen Embedded Atom Method potential) indicate a common dynamic heterogeneity, along with other features of glass-forming (GF) liquids such as collective atomic motion in the form of string-like atomic displacements, potential energy fluctuations and particle displacements with long range correlations ('colored' or 'pink' noise), and particle displacement events having a power law scaling in magnitude, as found in earthquakes.

View Article and Find Full Text PDF

The generalized entropy theory (GET) offers many insights into how molecular parameters influence polymer glass-formation. Given the fact that chain rigidity often plays a critical role in understanding the glass-formation of polymer materials, the GET was originally developed based on models of semiflexible chains. Consequently, all previous calculations within the GET considered polymers with some degree of chain rigidity.

View Article and Find Full Text PDF

Numerous experiments reveal that the dynamics of glass-forming polymer melts are profoundly influenced by the application of pressure, but a fundamental microscopic understanding of these observations remains incomplete. We explore the structural relaxation of a model glass-forming polymer melt over a wide range of pressures () by molecular dynamics simulation. In accord with experiments for nonassociating polymer melts and the generalized entropy theory, we find that the dependence of the structural relaxation time (τ) can be described by a pressure analog of the Vogel-Fulcher-Tammann equation and that the characteristic temperatures of glass formation increase with , while the fragility decreases with .

View Article and Find Full Text PDF

Charged dielectric spheres embedded in a dielectric medium provide the simplest model for many-body systems of polarizable ions and charged colloidal particles. We provide a multiple scattering formulation for the total electrostatic energy for such systems and demonstrate that the polarization energy can be rapidly evaluated by an image method that generalizes the image methods for conducting spheres. Individual contributions to the total electrostatic energy are ordered according to the number of polarized surfaces involved, and each additional surface polarization reduces the energy by a factor of (a/R)ϵ, where a is the sphere radius, R the average inter-sphere separation, and ϵ the relevant dielectric mismatch at the interface.

View Article and Find Full Text PDF

Telechelic polymers are chain macromolecules that may self-assemble through the association of their two mono-functional end groups (called "stickers"). A deep understanding of the relation between microscopic molecular details and the macroscopic physical properties of telechelic polymers is important in guiding the rational design of telechelic polymer materials with desired properties. The lattice cluster theory (LCT) for strongly interacting, self-assembling telechelic polymers provides a theoretical tool that enables establishing the connections between important microscopic molecular details of self-assembling polymers and their bulk thermodynamics.

View Article and Find Full Text PDF

The phase boundaries of polymer solutions in mixed solvents can be extremely complex due to the many competing van der Waals and associative interactions that can arise in these ubiquitous and technologically important complex fluids. The present paper focuses specific attention on ternary solutions of polymers (B) dissolved in a mixture of two solvents (A, C) that competitively associate with the polymer. We are particularly concerned with explaining the origin of the peculiar phenomenon of cononsolvency in mixed solvents, where a mixture of two individually good solvents behaves effectively as a poor solvent.

View Article and Find Full Text PDF

The relationship between folding cooperativity and downhill, or barrier-free, folding of proteins under highly stabilizing conditions remains an unresolved topic, especially for proteins such as λ-repressor that fold on the microsecond timescale. Under aqueous conditions where downhill folding is most likely to occur, we measure the stability of multiple H bonds, using hydrogen exchange (HX) in a λYA variant that is suggested to be an incipient downhill folder having an extrapolated folding rate constant of 2 × 10(5) s(-1) and a stability of 7.4 kcal·mol(-1) at 298 K.

View Article and Find Full Text PDF

Surface charging or polarization can strongly affect the nature of interactions between charged dielectric objects, particularly when sharp dielectric discontinuities are involved. By relying on a generalized image method, we derive an analytical, perturbative theory of the polarization and the interactions between charged particles in many-body systems. The validity and accuracy of the theory are established by comparing its predictions to full-blown numerical solutions.

View Article and Find Full Text PDF

We apply our recently developed generalized Flory-Huggins (FH) type theory for the competitive solvation of polymers by two mixed solvents to explain general trends in the variation of phase boundaries and solvent quality (quantified by the second osmotic virial coefficient B2) with solvent composition. The complexity of the theoretically predicted miscibility patterns for these ternary mixtures arises from the competitive association between the polymer and the solvents and from the interplay of these associative interactions with the weak van der Waals interactions between all components of the mixture. The main focus here lies in determining the influence of the free energy parameters for polymer-solvent association (solvation) and the effective FH interaction parameters {χαβ} (driving phase separation) on the phase boundaries (specifically the spinodals), the second osmotic virial coefficient B2, and the relation between the positions of the spinodal curves and the theta temperatures at which B2 vanishes.

View Article and Find Full Text PDF

Standard Flory-Huggins (FH) theory is utilized to describe the enigmatic cosolvency and cononsolvency phenomena for systems of polymers dissolved in mixed solvents. In particular, phase boundaries (specifically upper critical solution temperature spinodals) are calculated for solutions of homopolymers B in pure solvents and in binary mixtures of small molecule liquids A and C. The miscibility (or immiscibility) patterns for the ternary systems are classified in terms of the FH binary interaction parameters {χαβ} and the ratio r = ϕ A /ϕ C of the concentrations ϕ A and ϕ C of the two solvents.

View Article and Find Full Text PDF

While a wide range of non-trivial predictions of the generalized entropy theory (GET) of glass-formation in polymer melts agree with a large number of observed universal and non-universal properties of these glass-formers and even for the dependence of these properties on monomer molecular structure, the huge mathematical complexity of the theory precludes its extension to describe, for instance, the perplexing, complex behavior observed for technologically important polymer films with thickness below ∼100 nm and for which a fundamental molecular theory is lacking for the structural relaxation. The present communication describes a hugely simplified version of the theory, called the simplified generalized entropy theory (SGET) that provides one component necessary for devising a theory for the structural relaxation of thin polymer films and thereby supplements the first required ingredient, the recently developed Flory-Huggins level theory for the thermodynamic properties of thin polymer films, before the concluding third step of combining all the components into the SGET for thin polymer films. Comparisons between the predictions of the SGET and the full GET for the four characteristic temperatures of glass-formation provide good agreement for a highly non-trivial model system of polymer melts with chains of the structure of poly(n-α olefins) systems where the GET has produced good agreement with experiment.

View Article and Find Full Text PDF