Publications by authors named "Karl D Wittrup"

Purpose: Cytokines IL2 and IL12 exhibit potent anticancer activity but suffer a narrow therapeutic window due to off-tumor immune cell activation. Engineering cytokines with the ability to bind and associate with tumor collagen after intratumoral injection potentiated response without toxicity in mice and was previously safe in pet dogs with sarcoma. Here, we sought to test the efficacy of this approach in dogs with advanced melanoma.

View Article and Find Full Text PDF

Tumor-infiltrating dendritic cells (DCs) assume varied functional states that impact anti-tumor immunity. To delineate the DC states associated with productive anti-tumor T cell immunity, we compared spontaneously regressing and progressing tumors. Tumor-reactive CD8 T cell responses in Batf3 mice lacking type 1 DCs (DC1s) were lost in progressor tumors but preserved in regressor tumors.

View Article and Find Full Text PDF

Macrophages are plastic and, in response to different local stimuli, can polarize toward multi-dimensional spectrum of phenotypes, including the pro-inflammatory M1-like and the anti-inflammatory M2-like states. Using a high-throughput phenotypic screen in a library of ~4000 FDA-approved drugs, bioactive compounds and natural products, we find ~300 compounds that potently activate primary human macrophages toward either M1-like or M2-like state, of which ~30 are capable of reprogramming M1-like macrophages toward M2-like state and another ~20 for the reverse repolarization. Transcriptional analyses of macrophages treated with 34 non-redundant compounds identify both shared and unique targets and pathways through which the tested compounds modulate macrophage activation.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers isolated and characterized 349 monoclonal antibodies (mAbs) from a survivor of the 2014 Ebola outbreak, focusing on their response to the Ebola virus surface glycoprotein (EBOV GP).
  • About 77% of these mAbs were found to effectively neutralize live Ebola virus, with some demonstrating unprecedented levels of potency.
  • Structural analysis revealed a vulnerable site in the GP stalk region, and mAbs targeting this area showed significant therapeutic potential in protecting mice from lethal Ebola challenges, paving the way for new vaccine and treatment developments.
View Article and Find Full Text PDF

Standard cell proliferation assays use bulk media drug concentration to ascertain the potency of chemotherapeutic drugs; however, the relevant quantity is clearly the amount of drug actually taken up by the cell. To address this discrepancy, we have developed a flow cytometric clonogenic assay to correlate the amount of drug in a single cell with the cell's ability to proliferate using a cell tracing dye and doxorubicin, a naturally fluorescent chemotherapeutic drug. By varying doxorubicin concentration in the media, length of treatment time, and treatment with verapamil, an efflux pump inhibitor, we introduced 10(5) -10(10) doxorubicin molecules per cell; then used a dye-dilution assay to simultaneously assess the number of cell divisions.

View Article and Find Full Text PDF

Antibodies play key roles as reagents, diagnostics, and therapeutics in numerous biological and biomedical research settings. Although many antibodies are commercially available, oftentimes, specific applications require the development of antibodies with customized properties. Yeast surface display is a robust, versatile, and quantitative method for generating these antibodies and is accessible to single-investigator laboratories.

View Article and Find Full Text PDF

It is widely recognized that an array of addressable sensors can be multiplexed for the label-free detection of a library of analytes. However, such arrays have useful properties that emerge from the ensemble, even when monofunctionalized. As examples, we show that an array of nanosensors can estimate the mean and variance of the observed dissociation constant (KD), using three different examples of binding IgG with Protein A as the recognition site, including polyclonal human IgG (KD μ = 19 μM, σ(2) = 1000 mM(2)), murine IgG (KD μ = 4.

View Article and Find Full Text PDF

Intravenously delivered antibodies have been previously found to distribute in a perivascular fashion in a variety of tumor types and despite targeting a range of different antigens. Properties of both the antibody and the targeted antigen, such as the administered dose, binding affinity, and antigen metabolic half-life, are predicted to influence the observed perivascular distribution. Here, the effect of antibody dose on the perivascular distribution is determined using an unbiased image analysis approach to quantify the microscopic distribution of the antibody around thousands of blood vessels per tumor.

View Article and Find Full Text PDF

Saccharomyces cerevisiae stimulates dendritic cells (DCs) and represents a promising candidate for cancer vaccine development. Effective cross-presentation of antigen delivered to DCs is necessary for successful induction of cellular immunity. Here, we present a yeast-based vaccine approach that is independent of yeast's ability to express the chosen antigen, which is instead produced separately and conjugated to the yeast cell wall.

View Article and Find Full Text PDF