Publications by authors named "Karl Clark"

Background: The ability to generate endogenous Cre recombinase drivers using CRISPR-Cas9 knock-in technology allows lineage tracing, cell type specific gene studies, and validation of inferred developmental trajectories from phenotypic and gene expression analyses. This report describes endogenous zebrafish Cre and CreERT2 drivers generated with GeneWeld CRISPR-Cas9 precision targeted integration.

Results: and knock-ins crossed with ubiquitous -based Switch reporters led to broad labeling in expected mesodermal and neural crest-derived lineages in cardiac, pectoral fins, pharyngeal arch, liver, intestine, and mesothelial tissues, as well as enteric neurons.

View Article and Find Full Text PDF

DddA-derived cytosine base editors (DdCBEs) enable the targeted introduction of C•G-to-T•A conversions in mitochondrial DNA (mtDNA). DdCBEs work in pairs, with each arm composed of a transcription activator-like effector (TALE), a split double-stranded DNA deaminase half, and a uracil glycosylase inhibitor. This pioneering technology has helped improve our understanding of cellular processes involving mtDNA and has paved the way for the development of models and therapies for genetic disorders caused by pathogenic mtDNA variants.

View Article and Find Full Text PDF

Natural prokaryotic gene repression systems often exploit DNA looping to increase the local concentration of gene repressor proteins at a regulated promoter via contributions from repressor proteins bound at distant sites. Using principles from the Escherichia coli lac operon we design analogous repression systems based on target sequence-programmable Transcription Activator-Like Effector dimer (TALED) proteins. Such engineered switches may be valuable for synthetic biology and therapeutic applications.

View Article and Find Full Text PDF

DddA-derived cytosine base editors (DdCBEs) enable the targeted introduction of C•G-to-T•A conversions in mitochondrial DNA (mtDNA). DdCBEs are often deployed as pairs, with each arm comprised of a transcription activator-like effector (TALE), a split double-stranded DNA deaminase half, and a uracil glycosylase inhibitor. This pioneering technology has helped improve our understanding of cellular processes involving mtDNA and has paved the way for the development of models and therapies for genetic disorders caused by pathogenic mtDNA variants.

View Article and Find Full Text PDF

The vertebrate stress response (SR) is mediated by the hypothalamic-pituitary-adrenal (HPA) axis and contributes to generating context appropriate physiological and behavioral changes. Although the HPA axis plays vital roles both in stressful and basal conditions, research has focused on the response under stress. To understand broader roles of the HPA axis in a changing environment, we characterized an adaptive behavior of larval zebrafish during ambient illumination changes.

View Article and Find Full Text PDF

The gene encodes lamin A and lamin C, which play important roles in nuclear organization. Pathogenic variants in cause laminopathies, a group of disorders with diverse phenotypes. There are two main groups of disease-causing variants: missense variants affecting dimerization and intermolecular interactions, and heterozygous substitutions activating cryptic splice sites.

View Article and Find Full Text PDF

The vertebrate stress response (SR) is mediated by the hypothalamic-pituitary-adrenal (HPA) axis and contributes to generating context appropriate physiological and behavioral changes. Although the HPA axis plays vital roles both in stressful and basal conditions, research has focused on the response under stress. To understand broader roles of the HPA axis in a changing environment, we characterized an adaptive behavior of larval zebrafish during ambient illumination changes.

View Article and Find Full Text PDF

Statins are a mainstay intervention for cardiovascular disease prevention, yet their use can cause rare severe myopathy. HMG-CoA reductase, an essential enzyme in the mevalonate pathway, is the target of statins. We identified nine individuals from five unrelated families with unexplained limb-girdle like muscular dystrophy and bi-allelic variants in HMGCR via clinical and research exome sequencing.

View Article and Find Full Text PDF

The Integrator complex is a multi-subunit protein complex that regulates the processing of nascent RNAs transcribed by RNA polymerase II (RNAPII), including small nuclear RNAs, enhancer RNAs, telomeric RNAs, viral RNAs, and protein-coding mRNAs. Integrator subunit 11 (INTS11) is the catalytic subunit that cleaves nascent RNAs, but, to date, mutations in this subunit have not been linked to human disease. Here, we describe 15 individuals from 10 unrelated families with bi-allelic variants in INTS11 who present with global developmental and language delay, intellectual disability, impaired motor development, and brain atrophy.

View Article and Find Full Text PDF
Article Synopsis
  • Mitochondria are vital cell organelles that create energy and produce important signaling molecules, like cortisol, while forming networks within cells.
  • Their composition can vary based on cell type, tissue, and organ, and they can change due to factors such as disease, aging, and environmental influences.
  • Mutations in mitochondrial DNA are linked to serious diseases, and advancements in mitochondrial DNA editing tools open up possibilities for personalized gene therapies targeting these disorders.
View Article and Find Full Text PDF
Article Synopsis
  • Mitochondrial disorders exhibit a complex range of symptoms that complicate understanding of these organelles' roles in health and disease, particularly in cases like Leigh Syndrome French Canadian Type (LSFC).
  • Researchers developed a novel genetic model using zebrafish, which mimics key characteristics of LSFC, including liver dysfunction and metabolic issues, by targeting specific genetic variations.
  • The study found that liver-specific genetic therapies could effectively reverse the symptoms in the zebrafish model, highlighting the liver's important role in the disease's progression.
View Article and Find Full Text PDF
Article Synopsis
  • A protein trap library using gene-break transposon (GBT) in zebrafish was created to help in understanding the genetic factors involved in human diseases, particularly heart rhythm disorders like sick sinus syndrome (SSS).
  • The study screened 609 GBT lines, resulting in 35 zebrafish insertional cardiac (ZIC) mutants that express cardiac-related genes, and three of these mutants showed SSS-like symptoms.
  • Further analysis of one specific arrhythmogenic mutant revealed a new gene associated with SSS, highlighting its expression in sinus node pacemaker cells and its relationship with another cardiac gene, HCN4.
View Article and Find Full Text PDF

Mitochondria are a dynamic eukaryotic innovation that play diverse roles in biology and disease. The mitochondrial genome is remarkably conserved in all vertebrates, encoding the same 37-gene set and overall genomic structure, ranging from 16,596 base pairs (bp) in the teleost zebrafish () to 16,569 bp in humans. Mitochondrial disorders are amongst the most prevalent inherited diseases, affecting roughly 1 in every 5000 individuals.

View Article and Find Full Text PDF

The ability to regulate gene activity spatially and temporally is essential to investigate cell-type-specific gene function during development and in postembryonic processes and disease models. The Cre/ system has been widely used for performing cell and tissue-specific conditional analysis of gene function in zebrafish. However, simple and efficient methods for isolation of stable, Cre/ regulated zebrafish alleles are lacking.

View Article and Find Full Text PDF

The FusX TALE Based Editor (FusXTBE) is a programmable base editing platform that can introduce specific TC-to-TT variations in the mitochondrial DNA (mtDNA). Here, we provide a protocol describing the synthesis and testing of the FusXTBE plasmids in cultured human cell lines. This tool is designed to be easily modified to work in diverse applications where editing of mitochondrial DNA is desired.

View Article and Find Full Text PDF

Nearly 90% of human pathogenic mutations are caused by small genetic variations, and methods to correct these errors efficiently are critically important. One way to make small DNA changes is providing a single-stranded oligo deoxynucleotide (ssODN) containing an alteration coupled with a targeted double-strand break (DSB) at the target locus in the genome. Coupling an ssODN donor with a CRISPR-Cas9-mediated DSB is one of the most streamlined approaches to introduce small changes.

View Article and Find Full Text PDF

Functional analyses of mitochondria have been hampered by few effective approaches to manipulate mitochondrial DNA (mtDNA) and a lack of existing animal models. Recently a TALE-derived base editor was shown to induce C-to-T (or G-to-A) sequence changes in mtDNA. We report here the FusX TALE Base Editor (FusXTBE) to facilitate broad-based access to TALE mitochondrial base editing technology.

View Article and Find Full Text PDF

Architectural proteins alter the shape of DNA. Some distort the double helix by introducing sharp kinks. This can serve to relieve strain in tightly-bent DNA structures.

View Article and Find Full Text PDF

Efficient precision genome engineering requires high frequency and specificity of integration at the genomic target site. Multiple design strategies for zebrafish gene targeting have previously been reported with widely varying frequencies for germline recovery of integration alleles. The GeneWeld protocol and pGTag (plasmids for Gene Tagging) vector series provide a set of resources to streamline precision gene targeting in zebrafish.

View Article and Find Full Text PDF
Article Synopsis
  • - The NIH Somatic Cell Genome Editing Consortium aims to enhance human health by developing safer and more effective genome editing techniques for treating diseases directly in patients' cells.
  • - The consortium plans to create a toolkit that includes new genome editing technologies, delivery methods, and validated data, which will be shared with the biomedical research community.
  • - By conducting thorough testing and validation, the initiative seeks to accelerate the discovery of new therapies for various health conditions.
View Article and Find Full Text PDF

We previously reported efficient precision targeted integration of reporter DNA in zebrafish and human cells using CRISPR/Cas9 and short regions of homology. Here, we apply this strategy to isolate zebrafish Cre recombinase drivers whose spatial and temporal restricted expression mimics endogenous genes. A 2A-Cre recombinase transgene with 48 bp homology arms was targeted into proneural genes ascl1b, olig2 and neurod1.

View Article and Find Full Text PDF

Purpose: Exome sequencing often identifies pathogenic genetic variants in patients with undiagnosed diseases. Nevertheless, frequent findings of variants of uncertain significance necessitate additional efforts to establish causality before reaching a conclusive diagnosis. To provide comprehensive genomic testing to patients with undiagnosed disease, we established an Individualized Medicine Clinic, which offered clinical exome testing and included a Translational Omics Program (TOP) that provided variant curation, research activities, or research exome sequencing.

View Article and Find Full Text PDF

Gene regulation by control of transcription initiation is a fundamental property of living cells. Much of our understanding of gene repression originated from studies of the Escherichia coli lac operon switch, in which DNA looping plays an essential role. To validate and generalize principles from lac for practical applications, we previously described artificial DNA looping driven by designed transcription activator-like effector dimer (TALED) proteins.

View Article and Find Full Text PDF

Background: GNB1 encodes a subunit of a heterotrimeric G-protein complex that transduces intracellular signaling cascades. Disruptions to the gene have previously been shown to be embryonic lethal in knockout mice and to cause complex neurodevelopmental disorders in humans. To date, the majority of variants associated with disease in humans have been missense variants in exons 5-7.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session0uf711rtciullmk101ta9l2qn1ijr7dr): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once