Microglia respond to cytotoxic protein aggregates associated with the progression of neurodegenerative disease. Pathological protein aggregates activate the microglial NLRP3 inflammasome resulting in proinflammatory signaling, secretion, and potentially pyroptotic cell death. We characterized mixed sex primary mouse microglia exposed to microbial stressors and alpha synuclein preformed fibrils (αsyn PFFs) to identify cellular mechanisms related to Parkinson's disease.
View Article and Find Full Text PDFParkinson's disease, a neurodegenerative disease that affects 15 million people worldwide, is characterized by deposition of α-synuclein into Lewy Bodies in brain neurons. Although this disease is prevalent worldwide, a therapy or cure has yet to be found. Several small compounds have been reported to disrupt fibril formation.
View Article and Find Full Text PDFSynucleinopathies are a group of neurodegenerative diseases including Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA). These diseases are characterized by the aggregation and deposition of α-synuclein (α-syn) in Lewy bodies (LBs) in PD and DLB or as glial cytoplasmic inclusions in MSA. In healthy brains, only ∼4% of α-syn is phosphorylated at Ser (pS-α-syn), whereas >90% pS-α-syn may be found in LBs, suggesting that pS-α-syn could be a useful biomarker for synucleinopathies.
View Article and Find Full Text PDFNeurodegenerative diseases are characterized by a dysregulated neuro-glial microenvironment, culminating in functional deficits resulting from neuronal cell death. Inflammation is a hallmark of the neurodegenerative microenvironment and despite a critical role in tissue homeostasis, increasing evidence suggests that chronic inflammatory insult can contribute to progressive neuronal loss. Inflammation has been studied in the context of neurodegenerative disorders for decades but few anti-inflammatory treatments have advanced to clinical use.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
November 2019
Multiple system atrophy (MSA) is a fatal, adult-onset neurodegenerative disorder that has no cure and very limited treatment options. MSA is characterized by deposition of fibrillar α-synuclein (α-syn) in glial cytoplasmic inclusions in oligodendrocytes. Similar to other synucleinopathies, α-syn self-assembly is thought to be a key pathologic event and a prominent target for disease modification in MSA.
View Article and Find Full Text PDF